# model=SVC(C=c,gamma=g) # print('Fitting model with params c: %f, g: %f ...'%(c,g)) # model=model.fit(trset,trlabels) # try: # scorei=model.score(cvset,cvlabels) # except: # scorei=0 # something went wrong... # scores[counter]=np.mean(scorei) # paramholder[counter,0]=c # paramholder[counter,1]=g # if scorei>bestscore: # bestscore=scorei # bestmodel=model # counter+=1 # print('Score = %f with c: %f, g: %f' %(scorei,c,g)) #bestc=paramholder[scores.argmax(),0] #bestg=paramholder[scores.argmax(),1] #print('Best score of %f with c: %f, g: %f' %(bestscore,bestc,bestg)) print('Fitting model with params c: %f, g: %f ...'%(c,g)) model=SVC(C=c,gamma=g) model=model.fit(trset,trlabels) pickle.dump(model,open('data/svm_c5_g05.p','wb')) # predict test set testx=imt.loadimgfromcsv(testfile,colstart=0)/255.0 ntest=testx.shape[0] preds = model.predict(testx) # output to .csv file labels imt.writeoutpred(map(int,preds),np.arange(ntest)+1,outfile,header=["ImageId","Label"])
nx = x.shape[0] for zz in range(nx): sdAE.GD(x[zz].reshape(x.shape[1], 1), labels[lcount], alpha=0.1) lcount += 1 iter += 1 # check model with CV set cvscore = sdAE.score(cvset, cvlabels) if cvscore >= bestscore: # best so far, but wait a bit if cvscore >= bestscore * improvethresh: # increase patience patience = np.maximum(patience, iter * patienceinc) bestscore = cvscore if iter >= patience: # done! loopflag = True print('Exiting optimization. CV score= %3f' % cvscore) break # out of block loop ep += 1 # pickle the best model pickle.dump(sdAE, open('data/finetuned.p', 'wb')) # predict labels from test dataset # process in all at once testx = imt.loadimgfromcsv(testfile, colstart=0) / 255.0 ntest = testx.shape[0] preds = sdAE.predict(testx.T) # output to .csv file labels imt.writeoutpred(preds, range(ntest) + 1, outfile, header=["ImageId", "Label"])
# model=model.fit(trset,trlabels) # try: # scorei=model.score(cvset,cvlabels) # except: # scorei=0 # something went wrong... # scores[counter]=np.mean(scorei) # paramholder[counter,0]=c # paramholder[counter,1]=g # if scorei>bestscore: # bestscore=scorei # bestmodel=model # counter+=1 # print('Score = %f with c: %f, g: %f' %(scorei,c,g)) #bestc=paramholder[scores.argmax(),0] #bestg=paramholder[scores.argmax(),1] #print('Best score of %f with c: %f, g: %f' %(bestscore,bestc,bestg)) print('Fitting model with params c: %f, g: %f ...' % (c, g)) model = SVC(C=c, gamma=g) model = model.fit(trset, trlabels) pickle.dump(model, open('data/svm_c5_g05.p', 'wb')) # predict test set testx = imt.loadimgfromcsv(testfile, colstart=0) / 255.0 ntest = testx.shape[0] preds = model.predict(testx) # output to .csv file labels imt.writeoutpred(map(int, preds), np.arange(ntest) + 1, outfile, header=["ImageId", "Label"])
nx=x.shape[0] for zz in range(nx): sdAE.GD(x[zz].reshape(x.shape[1],1),labels[lcount],alpha=0.1) lcount+=1 iter+=1 # check model with CV set cvscore=sdAE.score(cvset,cvlabels) if cvscore >= bestscore: # best so far, but wait a bit if cvscore >= bestscore*improvethresh: # increase patience patience = np.maximum(patience,iter*patienceinc) bestscore = cvscore if iter >= patience: # done! loopflag=True print('Exiting optimization. CV score= %3f'%cvscore) break # out of block loop ep+=1 # pickle the best model pickle.dump(sdAE,open('data/finetuned.p','wb')) # predict labels from test dataset # process in all at once testx=imt.loadimgfromcsv(testfile,colstart=0)/255.0 ntest=testx.shape[0] preds = sdAE.predict(testx.T) # output to .csv file labels imt.writeoutpred(preds,range(ntest)+1,outfile,header=["ImageId","Label"])