def warped_image_feed(S, MP, image_dims): ''' Given a list of file paths, warp matrices and a 2-tuple of (H, W), yields H x W x 3 images. ''' for i, x in enumerate(S): I = imageutils.read(x) yield numpy.asarray( alignface.warp_to_template(I, MP[i], image_dims=image_dims))
def image_feed(S, image_dims): ''' Given a list of file paths and a 2-tuple of (H, W), yields H x W x 3 images. ''' for x in S: I = imageutils.read(x) if I.shape[:2] != image_dims: yield imageutils.resize(I, tuple(image_dims)) else: yield I
def image_feed_masked(S, image_dims): ''' Given a list of file paths and a 2-tuple of (H, W), yields H x W x 3 images. ''' for x in S: I = imageutils.read(x) if I.shape[:2] != image_dims: I = imageutils.resize(I, tuple(image_dims)) center_mask_inplace(I) yield I
# comment out the line below to generate all the test images X=X[:1] # Set the free parameters # Note: for LFW, 0.4*8.82 is approximately equivalent to beta=0.4 K=config.K delta_params=[float(x.strip()) for x in config.delta.split(',')] t0=time.time() result=[] original=[] # for each test image for i in range(len(X)): result.append([]) xX=X[i].replace('lfw','lfw_aegan') o=imageutils.read(xX) image_dims=o.shape[:2] if min(image_dims)<minimum_resolution: s=float(minimum_resolution)/min(image_dims) image_dims=(int(round(image_dims[0]*s)),int(round(image_dims[1]*s))) o=imageutils.resize(o,image_dims) XF=model.mean_F([o]) original.append(o) # for each transform for j,(a,b) in enumerate(pairs): _,P,Q=make_manifolds(b,[a],[],X=X[i:i+1],N=1) P=P[0] Q=Q[0] xP=[x.replace('lfw','lfw_aegan') for x in P] xQ=[x.replace('lfw','lfw_aegan') for x in Q] PF=model.mean_F(utils.image_feed(xP[:K],image_dims))
# for each interpolation step result=[] for delta in delta_params: #每一个delta print(xX,image_dims,delta,len(xP),len(xQ)) t2=time.time() Y=model.F_inverse(XF+WF*delta,max_iter=max_iter,initial_image=init) t3=time.time() print('{} minutes to reconstruct'.format((t3-t2)/60.0)) result.append(Y) max_iter=config.iter//2 init=Y result=numpy.asarray([result]) original=numpy.asarray([original]) X_mask=prefix_path+'-mask.png' if 'mask' in postprocess and os.path.exists(X_mask): mask=imageutils.resize(imageutils.read(X_mask),image_dims) result*=mask result+=original*(1-mask) if 'color' in postprocess: result=utils.color_match(numpy.asarray([original]),result) if 'mask' in postprocess and os.path.exists(X_mask): result*=mask result+=original*(1-mask) if config.include_original: m=imageutils.montage(numpy.concatenate([numpy.expand_dims(original,1),result],axis=1)) else: m=imageutils.montage(result) if config.output: opath=config.output else: opath='{}_{}_{}{}.{}'.format(prefix_path,timestamp,config.method,postfix_comment,config.output_format)
assert 0 <= delta0 assert delta0 <= delta1 ddelta = config.delta_step assert ddelta > 0 # load models if config.backend == 'torch': import deepmodels_torch model = deepmodels_torch.vgg19g_torch(device_id=config.device_id) elif config.backend == 'caffe+scipy': model = deepmodels.vgg19g(device_id=config.device_id) else: raise ValueError('Unknown backend') # load interpolation data original = imageutils.read(ipath1) XF = model.mean_F([original]) prefix_path = os.path.splitext(ipath1)[0] if not os.path.exists(prefix_path + postfix_comment): os.mkdir(prefix_path + postfix_comment) # debug X_mask = prefix_path + '-mask.png' if 'mask' in postprocess and os.path.exists(X_mask): mask = imageutils.resize(imageutils.read(X_mask), image_dims) data = numpy.load(ipath2) if 'WF' in data: WF = data['WF'] elif 'muQ' in data and 'muP' in data: WF = data['muQ'] - data['muP'] # generate frames t0 = time.time()
def main(config): caffe.set_device(config['device_id']) caffe.set_mode_gpu() # step 1. configure cnn if config['arch']=='A4,G1': # an ensemble of alexnet and googlenet models=[ caffe.Net('deploy-alexnet_full_conv.prototxt','minc-alexnet_full_conv.caffemodel',caffe.TEST), caffe.Net('deploy-googlenet_full_conv_no_pooling.prototxt','minc-googlenet_full_conv.caffemodel',caffe.TEST) ] # alexnet needs a padded input to get a full-frame prediction input_padding=[97,0] # nominal footprint is 46.4% for A4, 23.2% for G1 scales=[256/550.0,256/1100.0] bgr_mean=numpy.array([104,117,124],dtype=numpy.float32) # inputs must be a multiple of the stride # otherwise, the full-frame prediction will be shifted effective_stride=[32,32] # TODO: A4 needs spatial oversampling (# shifts = 2) else: raise NotImplementedError # step 2. configure crf if config['crf']=='1': # these are the CRF parameters for MINC (see supplemental) # the parameters can have a big impact on the output # so they should be tuned for the target domain # (MINC note: this code is not exactly the same as the # original MINC code so these parameters will not # generate the exact same results) crf_params={ "bilateral_pairwise_weight": 5.0, # w_p "bilateral_theta_xy": 0.1, # \theta_p "bilateral_theta_lab_l": 20.0, # \theta_L "bilateral_theta_lab_ab": 5.0, # \theta_ab "n_crf_iters": 10, "unary_prob_padding": 1e-05, } elif config['crf']=='matclass': # new CRF parameters crf_params={ "bilateral_pairwise_weight": 8.0, # w_p "bilateral_theta_xy": 0.5, # \theta_p "bilateral_theta_lab_l": 0.5, # \theta_L "bilateral_theta_lab_ab": 3.0, # \theta_ab "n_crf_iters": 10, "unary_prob_padding": 1e-05, } else: raise NotImplementedError pad_value=bgr_mean[::-1]/255.0 # step 3. extract class prediction maps for ipath in config['input']: # read image original=imageutils.read(ipath) z=config['min_dim']/float(min(original.shape[:2])) crf_shape=(23,int(round(original.shape[0]*z)),int(round(original.shape[1]*z))) # predict 6 maps: 3 scales for each model maps=[] for index,model in enumerate(models): p=input_padding[index] s=scales[index] for index2,multiscale in enumerate([0.7071067811865476,1.0,1.4142135623730951]): # resample the input so it is a multiple of the stride # and the receptive field matches the nominal footprint scale_factor=(256/s)/float(min(original.shape[:2])) scaled_size=[nearest_multiple(original.shape[i]*scale_factor*multiscale,effective_stride[index]) for i in range(2)] scaled=imageutils.resize(original,scaled_size) if p>0: # add input padding for alexnet pad=numpy.ones((scaled.shape[0]+2*p,scaled.shape[1]+2*p,scaled.shape[2]),dtype=scaled.dtype)*pad_value pad[p:-p,p:-p]=scaled scaled=pad # predict and resample the map to be the correct size data=preprocess_and_reshape(scaled,model,bgr_mean=bgr_mean) output=model.forward_all(data=data)['prob'][0] output=scipy.ndimage.interpolation.zoom(output,[1.0,crf_shape[1]/float(output.shape[1]),crf_shape[2]/float(output.shape[2])],order=1) maps.append(output) # step 4. average all maps crf_map=numpy.asarray(maps).mean(axis=0) if False: # output extra maps for debugging for i,x,j in [(i,x,j) for i,x in enumerate(maps) for j in range(23)]: imageutils.write('zzz_map_{}{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),x[j]) for j in range(23): imageutils.write('zzz_mean_map_{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),crf_map[j]) imageutils.write('zzz_naive_labels.png',labels_to_color(numpy.argsort(-crf_map.reshape(23,-1).T).T.reshape(*crf_map.shape)[0])) crf_color=imageutils.resize(original,(crf_shape[1],crf_shape[2])) assert crf_color.shape[0]==crf_map.shape[1] and crf_color.shape[1]==crf_map.shape[2] # step 5. dense crf #lcrf=densecrf_matclass.general_densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params) lcrf=densecrf_matclass.densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params) labels_crf=lcrf.map(crf_params) # step 6. visualize with color labels result=labels_to_color(labels_crf) if os.path.exists(config['output']) and os.path.isdir(config['output']): opath=os.path.join(config['output'],os.path.splitext(os.path.split(ipath)[1])[0])+'.png' else: opath=config['output'] assert not os.path.exists(opath) imageutils.write(opath,result) print(opath)