def find_stars_fld2(): ## Loop through all the different data sets for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] sky = dict_skies[key] fwhm = dict_fwhm[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Sky: ', sky) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] redu.find_stars(img_files, fwhm=fwhm, threshold=8, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'mask.fits') return
def find_stars_pleiades_closed(): reduce_dir = root_dir + 'reduce/pleiades/' fnum1 = [ 27, 28, 29, 30, 31, 35, 36, 37, 44, 45, 46, 47, 48, 49, 53, 54, 55, 62, 63, 64 ] fnum2 = [ 74, 75, 76, 89, 90, 91, 101, 102, 103, 110, 111, 112, 123, 124, 125, 132, 133 ] fnum3 = [ 134, 141, 142, 143, 153, 154, 155, 162, 163, 164, 171, 172, 173, 183, 184, 185 ] fnum4 = [ 192, 193, 194, 201, 202, 203, 213, 214, 215, 222, 223, 224, 228, 229, 230, 237 ] fnum5 = [ 238, 239, 249, 250, 251, 258, 259, 260, 267, 268, 269, 278, 279, 284, 285, 290 ] fnum6 = [291, 296, 297, 309, 310, 311, 318, 319, 320] fnum = fnum1 + fnum2 + fnum3 + fnum4 + fnum5 + fnum6 img_files = [ reduce_dir + 'obj_c{0:03d}_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=3, threshold=6) return
def analyze_stacks(): open_img_files = [ stacks_dir + 'FLD2_stack_open_30.fits', stacks_dir + 'FLD2_stack_open_60.fits' ] closed_img_files = [ stacks_dir + 'FLD2_stack_closed_3S_30.fits', stacks_dir + 'FLD2_stack_closed_3L_30.fits', stacks_dir + 'FLD2_stack_closed_4_30.fits', stacks_dir + 'FLD2_stack_closed_3S_60.fits', stacks_dir + 'FLD2_stack_closed_3L_60.fits', stacks_dir + 'FLD2_stack_closed_4_60.fits' ] #Find stars in image reduce_fli.find_stars(open_img_files, fwhm=8, threshold=10, N_passes=2, plot_psf_compare=False) reduce_fli.find_stars(closed_img_files, fwhm=4, threshold=10, N_passes=2, plot_psf_compare=False) # Calc stats on all the stacked images reduce_fli.calc_star_stats(open_img_files + closed_img_files, output_stats=stats_dir + 'stats_stacks.fits') return
def find_stars_pleiades_closed(): data_dir = root_dir + 'reduce/' os.chdir(data_dir) fnum1 = [ 7, 8, 12, 15, 16, 19, 20, 26, 27, 30, 31, 34, 35, 38, 39, 44, 45, 48, 49, 52 ] fnum2 = [ 53, 56, 57, 62, 63, 66, 67, 70, 71, 74, 75, 80, 81, 84, 85, 88, 89, 92, 93 ] fnum3 = [ 98, 99, 102, 103, 106, 107, 110, 111, 116, 117, 120, 121, 124, 125, 128, 129 ] fnum4 = [ 155, 156, 163, 164, 167, 168, 171, 172, 177, 178, 183, 184, 191, 192, 198, 199 ] fnum5 = [204, 205, 210, 211, 216, 217, 222, 223, 226, 227, 230, 231] fnum = fnum1 #+ fnum2 + fnum3 + fnum4 + fnum5 img_files = ['obj_c{0:03d}_clean.fits'.format(ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def analyze_stacks(): # Loop through all the different data sets and reduce them. all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] fwhm = dict_fwhm[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) image_file = [stacks_dir + 'beehive_stack_' + suf + '.fits'] all_images.append(image_file[0]) reduce_fli.find_stars(image_file, fwhm=fwhm, threshold=3, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'mask.fits') # Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' reduce_fli.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) # DEBUG - single threaded # image_file = stacks_dir + 'beehive_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_beehive(): # Loop through all the different data sets and reduce them. for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] sky = dict_skies[key] # o/c loop distinction fwhm = 5 if re.search('c_', key) else 8 thrsh = 10 if re.search('c_', key) else 5 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Sky: ', sky) img_files = [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] # Taken from working branch version args reduce_fli.find_stars(img_files, fwhm=fwhm, threshold = thrsh, plot_psf_compare=False, mask_file=calib_dir+'mask.fits') # DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # redu.find_stars_single(image_file, dict_fwhm['LS_c'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_fld2(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] filt = dict_filt[key] fwhm = dict_fwhm[key] thrsh = 10 peak_max = 30000 sharp_lim = 0.9 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' filt: ', filt) img_files = [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] #redu.find_stars(img_files, fwhm=fwhm, threshold=8, N_passes=2, plot_psf_compare=False, # mask_file=calib_dir+f'mask_{filt}.fits') redu.find_stars(img_files, fwhm=fwhm, threshold=thrsh, N_passes=2, plot_psf_compare=False, mask_file=calib_dir+f'mask_{filt}.fits', peak_max=peak_max, sharp_lim=sharp_lim) ## DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # redu.find_stars_single(image_file, dict_fwhm['LS_c'], 3, 2, False, calib_dir + 'mask.fits') return
def analyze_stacks(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] # o/c loop distinction fwhm = 15 if re.search('open', key) else 8 thrsh = 5 if re.search('open', key) else 6 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) print(' thrsh: ', str(thrsh)) image_file = [stacks_dir + 'beehive_stack_' + suf + '.fits'] all_images.append(image_file[0]) redu.find_stars(image_file, fwhm=fwhm, threshold=thrsh, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'domemask.fits') ## Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' redu.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) ## DEBUG - single threaded # image_file = stacks_dir + 'fld2_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_pleiades_open(): reduce_dir = root_dir + 'reduce/pleiades/' fnum1 = [ 56, 57, 58, 65, 66, 67, 77, 78, 79, 92, 93, 94, 98, 99, 100, 104, 105, 106 ] fnum2 = [ 113, 114, 115, 126, 127, 128, 135, 136, 137, 144, 145, 146, 156, 157, 158 ] fnum3 = [ 165, 166, 167, 174, 175, 176, 186, 187, 188, 195, 196, 197, 204, 205, 206 ] fnum4 = [ 216, 217, 218, 231, 232, 233, 240, 241, 242, 252, 253, 254, 261, 262, 263 ] fnum5 = [ 270, 271, 272, 280, 281, 286, 287, 292, 293, 299, 300, 301, 302, 312, 313 ] fnum6 = [314, 321, 322, 323] fnum = fnum1 + fnum2 + fnum3 + fnum4 + fnum5 + fnum6 img_files = [ reduce_dir + 'obj_o{0:03d}_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def find_stars_pleiades_ttf(): reduce_dir = root_dir + 'reduce/pleiades/' fnum1 = [ 32, 33, 34, 38, 39, 40, 50, 51, 52, 59, 60, 61, 68, 69, 70, 80, 81, 82, 86 ] fnum2 = [ 87, 88, 95, 96, 97, 107, 108, 109, 120, 121, 122, 129, 130, 131, 138, 139 ] fnum3 = [ 140, 150, 151, 152, 159, 160, 161, 168, 169, 170, 180, 181, 182, 189, 190 ] fnum4 = [ 191, 198, 199, 200, 210, 211, 212, 219, 220, 221, 225, 226, 227, 234, 235 ] fnum5 = [ 236, 246, 247, 248, 255, 256, 257, 264, 265, 266, 276, 277, 282, 283, 288 ] fnum6 = [289, 294, 295, 306, 307, 308, 315, 316, 317] fnum = fnum1 + fnum2 + fnum3 + fnum4 + fnum5 + fnum6 img_files = [ reduce_dir + 'obj_ttf{0:03d}_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def find_stars_pleiades_open(): reduce_dir = root_dir + 'reduce/pleiades/' # Old Naming Scheme # fnum1 = [10, 11, 14, 15, 18, 19, 24, 25, 28, 29, 34, 35, 38, 39, 40, 41, 44, 45, 50, 51, 55] # fnum2 = [60, 61, 64, 65, 68, 69, 74, 75, 78, 79, 82, 83, 88, 89, 92, 93, 96, 97, 102, 103] # fnum = fnum1 + fnum2 # img_files = [reduce_dir + 'obj{0:03d}_clean.fits'.format(ii) for ii in fnum] # reduce_fli.find_stars(img_files, fwhm=5, threshold=6) # New Naming Scheme #fnum1 = [106, 107, 110, 111, 116, 117, 120, 121, 124, 125, 130, 131, 134, 135, 138, 139, 144] #fnum2 = [145, 148, 149, 152, 153, 158, 159, 162, 163, 166, 167, 172, 173, 176, 177, 180, 181] fnum3 = [ 184, 185, 190, 191, 194, 195, 198, 199, 202, 203, 208, 209, 212, 213, 216, 217 ] fnum4 = [ 220, 221, 226, 227, 230, 231, 235, 238, 239, 244, 245, 248, 249, 252, 253 ] #fnum = fnum1 + fnum2 + fnum3 + fnum4 fnum = fnum3 + fnum4 img_files = [ reduce_dir + 'obj_o{0:03d}_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def find_stars_fld2(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] sky = dict_skies[key] fwhm = dict_fwhm[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Sky: ', sky) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] redu.find_stars(img_files, fwhm=fwhm, threshold=6, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'mask.fits') ## DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # redu.find_stars_single(image_file, dict_fwhm['LS_c'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_pleiades_binned_open(): data_dir = root_dir + 'reduce/' os.chdir(data_dir) fnum1 = [ 9, 10, 13, 14, 17, 18, 21, 22, 28, 29, 32, 33, 36, 37, 40, 41, 46, 47, 50, 51 ] fnum2 = [ 54, 55, 58, 59, 64, 65, 68, 69, 72, 73, 76, 77, 82, 83, 86, 87, 90, 91, 94, 95 ] fnum3 = [ 100, 101, 104, 105, 108, 109, 112, 113, 118, 119, 122, 123, 126, 127, 130, 131 ] fnum4 = [ 141, 142, 149, 150, 179, 180, 185, 186, 193, 194, 200, 201, 206, 207, 212, 213, 218, 219 ] fnum = fnum1 + fnum2 + fnum3 + fnum4 img_files = ['obj_o{0:03d}_clean.fits'.format(ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def find_stars_pleiades_tt(): data_dir = root_dir + 'reduce/' os.chdir(data_dir) fnum = [134, 135, 136, 137, 138, 139, 140] img_files = ['obj_tt{0:03d}_clean.fits'.format(ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def find_stars_orion(): # Open Loop img_files = [out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o] reduce_fli.find_stars(img_files, fwhm=8, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) #Closed Loop - 4W img_files = [out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4W]
def find_stars_beehive(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup for key in dict_suffix.keys(): #for key in ['LS_3wfs_s_1']: img = dict_images[key] suf = dict_suffix[key] sky = dict_sky[key] fwhm = dict_fwhm[key] sharp_lim = 0.9 #dict_sharp[key] thrsh = 4 peak_max = 30000 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Sky: ', sky) print(' Rebin: ', rebin_data) if rebin_data: img_files = [ out_dir + 'bin2/sta{img:03d}{suf:s}_scan_clean_bin2.fits'.format(img=ii, suf=suf) for ii in img ] mask_f = calib_dir + 'domemask_bin2.fits' fwhm = fwhm / 2 else: img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] mask_f = calib_dir + 'domemask.fits' # find stars on a starlist in parallel redu.find_stars(img_files, fwhm=fwhm, threshold=thrsh, plot_psf_compare=False, mask_file=mask_f, peak_max=peak_max, sharp_lim=sharp_lim) ## DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # redu.find_stars_single(image_file, dict_fwhm['LS_c'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_FLD2(): data_dir = root_dir + 'reduce/FLD2/' # Open Loop fnum = [63, 67, 71, 75, 80, 84, 88, 92, 96, 100, 104, 108, 112, 124] img_files = [ data_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=8, threshold=10) # Closed Loop fnum = [64, 68, 72, 76, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113] img_files = [ data_dir + 'obj{0:04d}_c_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=6, threshold=6) #Closed A fnum = [65, 69, 73, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114] img_files = [ data_dir + 'obj{0:04d}_cA_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=6, threshold=6) # Closed B fnum = [66, 70, 74, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115] img_files = [ data_dir + 'obj{0:04d}_cB_clean.fits'.format(ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=6, threshold=6) return
def find_stars_FLD2(): # Open Loop img_files = [out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o+fnum_o_2filt] reduce_fli.find_stars(img_files, fwhm=9, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=20, bottom_slice=0) #Closed Loop - threeWFS_LS img_files = [out_dir + 'obj{0:04d}_threeWFS_LS_clean.fits'.format(ii) for ii in fnum_threeWFS_LS+fnum_threeWFS_LS_2filt] reduce_fli.find_stars(img_files, fwhm=6, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=20, bottom_slice=0) #Closed Loop - threeWFSLS_B2_c img_files = [out_dir + 'obj{0:04d}_threeWFSLS_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSLS_B2_c+fnum_threeWFSLS_B2_c_2filt] reduce_fli.find_stars(img_files, fwhm=6, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=20, bottom_slice=0) #Closed Loop - threeWFSMean_B2_c img_files = [out_dir + 'obj{0:04d}_threeWFSMean_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSMean_B2_c+fnum_threeWFSMean_B2_c_2filt] reduce_fli.find_stars(img_files, fwhm=6, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=20, bottom_slice=0) return
def analyze_stacks_I(): open_img_files = [stacks_dir + 'beehive_stack_open_I.fits'] closed_img_files = [stacks_dir + 'beehive_stack_closed_I.fits'] #Find stars in image #reduce_fli.find_stars(open_img_files, fwhm=10, threshold=10, N_passes=2, plot_psf_compare=False, \ # mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ # left_slice =25, right_slice=0, top_slice=25, bottom_slice=0) reduce_fli.find_stars(closed_img_files, fwhm=7, threshold=10, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=25, bottom_slice=0) return
def find_stars_FLD2(): # Open Loop img_files = [ out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o ] reduce_fli.find_stars(img_files, fwhm=8, threshold=10) #Closed Loop img_files = [ out_dir + 'obj{0:04d}_c_clean.fits'.format(ii) for ii in fnum_c ] reduce_fli.find_stars(img_files, fwhm=6, threshold=6) return
def run_find_stars(): work_dir = '/Users/jlu/work/imaka/pleiades/press_release/' img_files = [ 'west_stack_open.fits', 'west_stack_ttf.fits', 'west_stack_closed.fits' ] for ii in range(len(img_files)): img_files[ii] = work_dir + img_files[ii] reduce_fli.find_stars(img_files, fwhm=5, threshold=4, N_passes=2) # Calc stats on all the stacked images reduce_fli.calc_star_stats(img_files, output_stats=work_dir + 'stats_stacks.fits') return
def find_stars_beehive(): # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] #reduce_fli.find_stars(img_files, fwhm=8, threshold=6, N_passes=2, plot_psf_compare=False, \ # mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ # left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) #Closed Loop - 4W img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4W ] #reduce_fli.find_stars(img_files, fwhm=7, threshold=6, N_passes=2, plot_psf_compare=False, \ # mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ # left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) #Closed Loop - B2 img_files = [ out_dir + 'obj{0:03d}LS4WFS_B2_c_scan_clean.fits'.format(ii) for ii in fnum_c_B2 ] #reduce_fli.find_stars(img_files, fwhm=7, threshold=6, N_passes=2, plot_psf_compare=False, \ # mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ # left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) #Closed Loop - zc img_files = [ out_dir + 'obj{0:03d}LS4WFS_zc11_c_scan_clean.fits'.format(ii) for ii in fnum_c_zc ] #reduce_fli.find_stars(img_files, fwhm=7, threshold=6, N_passes=2, plot_psf_compare=False, \ # mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ # left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) #Tip tilt img_files = [ out_dir + 'obj{0:03d}tip_tilt_scan_clean.fits'.format(ii) for ii in fnum_tt ] reduce_fli.find_stars(img_files, fwhm=7, threshold=6, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) return
def find_stars_pleiades(): ########## # Open Loop ########## fnum = np.arange(57, 67) img_files = ['{0:s}/obj{1:03d}_clean.fits'.format(data_dir, ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=2, threshold=6) ########## # Closed Loop ########## fnum = np.arange(47, 57) img_files = ['{0:s}/obj{1:03d}_clean.fits'.format(data_dir, ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=2, threshold=6) return
def analyze_stacks(): data_dir = root_dir + 'reduce/stacks/' stats_dir = root_dir + 'reduce/stats/' img_files = [data_dir + 'FLD2_stack_open.fits', data_dir + 'FLD2_stack_closed.fits', data_dir + 'FLD2_stack_closedA.fits', data_dir + 'FLD2_stack_closedB.fits', data_dir + 'FLD2_stack_closedC.fits', data_dir + 'FLD2_stack_closedD.fits'] #Find stars in image reduce_fli.find_stars(img_files, fwhm=5, threshold=10, N_passes=2, plot_psf_compare=False) # Calc stats on all the stacked images reduce_fli.calc_star_stats(img_files, output_stats= stats_dir + 'stats_stacks.fits') return
def find_stars_pleiades_ttf(): data_dir = root_dir + 'reduce/' os.chdir(data_dir) # fnum1 = [ 143, 144, 145, 146, 147, 148, 151, 152, 153, 154, 157, 157, 158, 161, 162, 165, 166 ] fnum2 = [ 169, 170, 173, 174, 175, 176, 181, 182, 187, 188, 189, 190, 202, 203, 208, 209, 214 ] fnum3 = [215, 220, 221, 224, 225, 228, 229] fnum = fnum1 + fnum2 + fnum3 img_files = ['obj_ttf{0:03d}_clean.fits'.format(ii) for ii in fnum] reduce_fli.find_stars(img_files, fwhm=5, threshold=6) return
def analyze_stacks(): open_img_files = [stacks_dir + 'FLD2_stack_open.fits'] closed_img_files = [stacks_dir + 'FLD2_stack_threeWFS_LS_c.fits'] #Find stars in image reduce_fli.find_stars(open_img_files, fwhm=10, threshold=100, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=25, bottom_slice=0) reduce_fli.find_stars(closed_img_files, fwhm=7, threshold=30, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=25, bottom_slice=0) # Calc stats on all the stacked images #reduce_fli.calc_star_stats(open_img_files+closed_img_files, output_stats= stats_dir + 'stats_stacks.fits') return
def analyze_stacks(): ## EDITED FOR 4F DATA ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] fwhm = dict_fwhm[key] filt = dict_filt[key] thrsh = 10 peak_max = 30000 sharp_lim = 0.9 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) image_file = [stacks_dir + 'fld2_stack_' + suf + '_' + filt + '.fits' ] ## EDITED LINE all_images.append(image_file[0]) #redu.find_stars(image_file, fwhm=fwhm, threshold=6, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + f'mask_{filt}.fits') redu.find_stars(image_file, fwhm=fwhm, threshold=thrsh, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + f'mask_{filt}.fits', peak_max=peak_max, sharp_lim=sharp_lim) ## Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' redu.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) ## DEBUG - single threaded # image_file = stacks_dir + 'fld2_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def find_stars_beehive(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup #for key in dict_suffix.keys(): for key in ['LS_3wfs_r2', 'LS_5wfs_r2', 'open_r2']: #for key in []: img = dict_images[key] suf = dict_suffix[key] sky = sky_dir + 'beehive_sky.fits' fwhm = dict_fwhm[key] thrsh = 10 peak_max = 30000 sharp_lim = dict_sharp[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Sky: ', sky) print(' Fwhm: ', str(fwhm)) print(' Thresh: ', str(thrsh)) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] # Taken from working branch version args redu.find_stars(img_files, fwhm=fwhm, threshold=thrsh, plot_psf_compare=False, mask_file=calib_dir + 'domemask.fits', peak_max=peak_max, sharp_lim=sharp_lim) ## DEBUG - single threaded #key_i = 'LS_5wfs_r2' #fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' #image_file = fmt.format(dir=out_dir, img=dict_images[key_i][0], suf=dict_suffix[key_i]) #redu.find_stars_single(image_file, dict_fwhm[key_i], 10, 2, False, calib_dir + 'mask.fits', sharp_lim=0.6, peak_max=30000) return
def find_stars_pleiades_closed(): reduce_dir = root_dir + 'reduce/pleiades/' ########## # first half of night ########## fnum1 = [ 31, 32, 33, 40, 41, 42, 52, 53, 54, 55, 64, 65, 66, 67, 79, 80, 81, 82, 91, 92 ] fnum2 = [ 93, 94, 417, 448, 479, 577, 578, 579, 580, 581, 590, 591, 592, 593 ] fnum = fnum1 + fnum2 img_files = [ '{0:s}/obj_c{1:03d}_clean.fits'.format(reduce_dir, ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=3, threshold=6) ########## # second half of night ########## fnum1 = [ 605, 606, 607, 608, 618, 619, 620, 632, 633, 634, 635, 1006, 1007, 1008 ] fnum2 = [ 1009, 1018, 1019, 1020, 1021, 1030, 1031, 1032, 1033, 1045, 1046, 1047, 1048 ] fnum3 = [ 1057, 1058, 1059, 1060, 1069, 1070, 1071, 1072, 1084, 1085, 1086, 1087, 1096 ] fnum4 = [1097, 1098, 1099] fnum = fnum1 + fnum2 + fnum3 + fnum4 img_files = [ '{0:s}/obj_c{1:03d}_clean.fits'.format(reduce_dir, ii) for ii in fnum ] reduce_fli.find_stars(img_files, fwhm=3, threshold=6) return
def find_stars_FLD2(): # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] reduce_fli.find_stars(img_files, fwhm=10, threshold=20, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=25, bottom_slice=0) #Closed Loop - threeWFS_LS img_files = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean.fits'.format(ii) for ii in fnum_c ] reduce_fli.find_stars(img_files, fwhm=7, threshold=30, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.7, mask_max=1.4, \ left_slice =25, right_slice=0, top_slice=25, bottom_slice=25) return