Пример #1
0
def export_scenelet(um,
                    o_pos_3d,
                    o_polys_3d,
                    query_full_skeleton,
                    scenes,
                    joints_active,
                    transform_id=None):
    """Extract a scenelet (poses and objects) from the data from the
    optimized problem.

    Args:
        um (stealth.pose.unk_manager.UnkManager):
            Data manager.
        o_pos_3d (np.ndarray):
            Output 3D poses.
        o_polys_3d (np.ndarray): (6K, 4, 3)
            3D oriented bounding boxes stored stacked.
        query_full_skeleton (stealth.logic.skeleton.Skeleton):
            Initial path containing time information.
        joints_active (list):
            List of joint_ids that were optimized for.
            Usage: pose16[:, joints_active] = o_pos_3d[pid, :, :]
        transform_id (int):
            Export only a specific group. Everything is exported, if None.
    Returns:
        A scenelet extracted from the data provided.
    """
    # cache function
    _guess_time_at = query_full_skeleton.guess_time_at

    # all poses or the ones that belong to a group/scenelet
    if transform_id is None:
        pids_sorted = sorted([(pid, pid2scene)
                              for pid, pid2scene in um.pids_2_scenes.items()],
                             key=lambda e: e[1].frame_id)
    else:
        # pids_sorted = sorted([(pid, pid2scene)
        #                       for pid, pid2scene in um.pids_2_scenes.items()
        #                       if pid2scene.transform_id == transform_id],
        #                      key=lambda e: e[1].frame_id)
        pids_2_scenes = um.pids_2_scenes
        pids_sorted = sorted([(pid, pids_2_scenes[pid])
                              for pid in um.get_pids_for(transform_id)],
                             key=lambda e: e[1].frame_id)

    # create output scenelet
    o = Scenelet()
    charness = None

    #
    # Skeleton
    #

    # cache skeleton reference
    skeleton = o.skeleton
    # fill skeleton
    for pid, pid2scene in pids_sorted:
        if charness is None:
            scene = scenes[pid2scene.id_scene]
            charness = scene.charness
            o.add_aux_info('name_scenelet', scene.name_scenelet)
            o.charness = charness
        # get frame_id
        frame_id = int(pid2scene.frame_id)
        # check if already exists
        if skeleton.has_pose(frame_id):
            # TODO: fix overlapping frame_ids
            lg.warning("[export_scenelet] Overwriting output frame_id %d" %
                       frame_id)
        # add with time guessed from input skeleton rate
        pose = np.zeros((3, Joint.get_num_joints()))
        pose[:, joints_active] = o_pos_3d[pid, :, :]
        pose[:, Joint.PELV] = (pose[:, Joint.LHIP] + pose[:, Joint.RHIP]) / 2.
        pose[:, Joint.NECK] = (pose[:, Joint.HEAD] + pose[:, Joint.THRX]) / 2.
        # for j, jid in joints_remap.items():
        #     pose[:, j] = o_pos_3d[pid, :, jid]
        assert not skeleton.has_pose(frame_id=frame_id), \
            'Already has pose: {}'.format(frame_id)
        skeleton.set_pose(frame_id=frame_id,
                          pose=pose,
                          time=_guess_time_at(frame_id))

    #
    # Objects
    #

    scene_obj = None
    scene_obj_oid = 0  # unique identifier that groups parts to objects
    for polys2scene in um.polys2scene.values():
        # Check, if we are restricted to a certain group
        if transform_id is not None \
          and polys2scene.transform_id != transform_id:
            continue
        start = polys2scene.poly_id_start
        end = start + polys2scene.n_polys

        # 6 x 4 x 3
        polys = o_polys_3d[start:end, ...]
        assert polys.shape[0] == 6, "Assumed cuboids here"
        if scene_obj is None or scene_obj_oid != polys2scene.object_id:
            category = next(cat for cat in CATEGORIES
                            if CATEGORIES[cat] == polys2scene.cat_id)
            scene_obj = SceneObj(label=category)
            scene_obj_oid = polys2scene.object_id
            o.add_object(obj_id=-1, scene_obj=scene_obj, clone=False)
        part = scene_obj.add_part(part_id=-1,
                                  label_or_part=polys2scene.part_label)
        # TODO: average for numerical precision errors
        centroid = np.mean(polys, axis=(0, 1))
        ax0 = polys[0, 1, :] - polys[0, 0, :]
        scale0 = np.linalg.norm(ax0)
        ax0 /= scale0
        ax1 = polys[0, 3, :] - polys[0, 0, :]
        scale1 = np.linalg.norm(ax1)
        ax1 /= scale1
        ax2 = polys[1, 0, :] - polys[0, 0, :]
        scale2 = np.linalg.norm(ax2)
        ax2 /= scale2
        part.obb = Obb(centroid=centroid,
                       axes=np.concatenate(
                           (ax0[:, None], ax1[:, None], ax2[:, None]), axis=1),
                       scales=[scale0, scale1, scale2])
    # if scene_obj is not None:
    #     o.add_object(obj_id=-1, scene_obj=scene_obj, clone=False)
    # else:
    #     lg.warning("No objects in scenelet?")

    # scene_obj = SceneObj('couch')
    # for poly_id in range(0, o_polys_3d.shape[0], 6):
    #     rects = o_polys_3d[poly_id : poly_id + 6, ...]
    #     # lg.debug("rects:\n%s" % rects)
    #     scene_obj.add_part(poly_id, 'seat')
    #
    #     # fig = plt.figure()
    #     # ax = fig.add_subplot(111, projection='3d')
    #     # for rid, rect in enumerate(rects):
    #     #     wrapped = np.concatenate((rect, rect[0:1, :]), axis=0)
    #     #     ax.plot(wrapped[:, 0], wrapped[:, 2], wrapped[:, 1])
    #     #     for ci in range(4):
    #     #         c = rect[ci, :]
    #     #         ax.text(c[0], c[2], c[1], s="%d, %d, %d"
    #     #                                     % (poly_id, rid, ci))
    #     #     if rid >= 1:
    #     #         break
    #     #
    #     # plt.show()
    #     part = scene_obj.get_part(poly_id)
    #     centroid = np.mean(rects, axis=(0, 1))
    #     ax0 = rects[0, 1, :] - rects[0, 0, :]
    #     scale0 = np.linalg.norm(ax0)
    #     ax0 /= scale0
    #     ax1 = rects[0, 3, :] - rects[0, 0, :]
    #     scale1 = np.linalg.norm(ax1)
    #     ax1 /= scale1
    #     ax2 = rects[1, 0, :] - rects[0, 0, :]
    #     scale2 = np.linalg.norm(ax2)
    #     ax2 /= scale2
    #     part.obb = Obb(centroid=centroid,
    #                    axes=np.concatenate((
    #                        ax0[:, None], ax1[:, None], ax2[:, None]
    #                    ), axis=1),
    #                    scales=[scale0, scale1, scale2])
    # o.add_object(obj_id=99, scene_obj=scene_obj,
    #                     clone=False)

    return o
Пример #2
0
def main(argv):
    conf = Conf.get()
    parser = argparse.ArgumentParser("Denis pose converter")
    parser.add_argument('camera_name',
                        help="Camera name ('G15', 'S6')",
                        type=str)
    parser.add_argument(
        '-d',
        dest='dir',
        required=True,
        help="Path to the <scene folder>/denis containing skeletons.json")
    parser.add_argument(
        '-filter',
        dest='with_filtering',
        action="store_true",
        help="Should we do post-filtering (1-euro) on the pelvis positions")
    parser.add_argument('-huber',
                        required=False,
                        help="Should we do huber loss?",
                        action='store_true')
    parser.add_argument('-smooth',
                        type=float,
                        default=0.005,
                        help="Should we have a smoothness term (l2/huber)?")
    parser.add_argument(
        '--winsorize-limit',
        type=float,
        default=conf.optimize_path.winsorize_limit,
        help='Threshold for filtering too large jumps of the 2D centroid')
    parser.add_argument('--no-resample',
                        action='store_true',
                        help="add resampled frames")
    parser.add_argument('--n-actors',
                        type=int,
                        default=1,
                        help="How many skeletons to track.")
    parser.add_argument('-n-actors',
                        type=int,
                        default=1,
                        help="Max number of people in scene.")
    # parser.add_argument(
    #     '-r', type=float,
    #     help='Video rate. Default: 1, if avconv -r 5. '
    #          'Original video sampling rate (no subsampling) should be '
    #          '24/5=4.8. avconv -r 10 leads to 24/10=2.4.',
    #     required=True)
    parser.add_argument('--person_height',
                        type=float,
                        help='Assumed height of human(s) in video.',
                        default=Conf.get().optimize_path.person_height)
    parser.add_argument(
        '--forwards-window-size',
        type=int,
        help='How many poses in time to look before AND after to '
        'average forward direction. 0 means no averaging. Default: 0.',
        default=0)
    parser.add_argument('--no-img',
                        action='store_true',
                        help='Read and write images (vis reproj error)')
    parser.add_argument('--postfix',
                        type=str,
                        help="output file postfix.",
                        default='unannot')
    args = parser.parse_args(argv)
    show = False
    args.resample = not args.no_resample
    # assert not args.resample, "resample should be off"
    assert os.path.exists(args.dir), "Source does not exist: %s" % args.dir
    p_scene = os.path.normpath(os.path.join(args.dir, os.pardir))  # type: str
    p_video_params = os.path.join(p_scene, 'video_params.json')
    assert os.path.exists(p_video_params), "Need video_params.json for rate"
    if 'r' not in args or args.r is None:
        args.r = json.load(open(p_video_params, 'r'))['rate-avconv']

    # manual parameters (depth initialization, number of actors)
    p_scene_params = os.path.join(args.dir, os.pardir, 'scene_params.json')
    if not os.path.exists(p_scene_params):
        scene_params = {
            'depth_init': 10.,
            'actors': args.n_actors,
            'ground_rot': [0., 0., 0.]
        }
        json.dump(scene_params, open(p_scene_params, 'w'))
        raise RuntimeError("Inited scene_params.json, please check: %s" %
                           p_scene_params)
    else:
        scene_params = json.load(open(p_scene_params, 'r'))
        lg.warning("Will work with %d actors and init depth to %g" %
                   (scene_params['actors'], scene_params['depth_init']))
        assert '--n-actors' not in argv \
               or args.n_actors == scene_params['actors'], \
            "Actor count mismatch, remove %d from args, because " \
            "scene_params.json says %d?" \
            % (args.n_actors, scene_params['actors'])
        args.n_actors = scene_params['actors']
        ground_rot = scene_params['ground_rot'] or [0., 0., 0.]

    # load images
    path_images = os.path.abspath(os.path.join(args.dir, os.pardir, 'origjpg'))
    images = {}
    shape_orig = None
    if not args.no_img:
        images, shape_orig = load_images(path_images)

    path_skeleton = \
        max((f for f in os.listdir(os.path.join(args.dir))
             if f.startswith('skeletons') and f.endswith('json')),
            key=lambda s: int(os.path.splitext(s)[0].split('_')[1]))
    print("path_skeleton: %s" % path_skeleton)
    data = json.load(open(os.path.join(args.dir, path_skeleton), 'r'))
    # data, pose_constraints, first_run = \
    #     cleanup(data, p_dir=os.path.join(args.dir, os.pardir))
    # poses_2d = []
    # plt.figure()
    # show_images(images, data)
    if False:
        # pose_ids = identify_actors_multi(data, n_actors=1)
        p_segm_pickle = os.path.join(args.dir, os.pardir,
                                     "label_skeletons.pickle")
        problem = None
        if False and os.path.exists(p_segm_pickle):
            lg.warning("Loading skeleton segmentation from pickle %s" %
                       p_segm_pickle)
            pose_ids, problem = pickle_load(open(p_segm_pickle, 'rb'))
        if not problem or problem._n_actors != args.n_actors:
            pose_ids, problem, data = more_actors_gurobi(
                data,
                n_actors=args.n_actors,
                constraints=pose_constraints,
                first_run=first_run)
            if True or show:
                show_multi(images,
                           data,
                           pose_ids,
                           problem,
                           p_dir=os.path.join(args.dir, os.pardir),
                           first_run=first_run,
                           n_actors=args.n_actors)
            pickle.dump((pose_ids, problem), open(p_segm_pickle, 'wb'), -1)
    else:
        pose_ids = greedy_actors(data, n_actors=args.n_actors)
        data = DataPosesWrapper(data=data)

    visible_f = {a: {} for a in range(args.n_actors)}
    visible_f_max = 0.
    if show:
        plt.ion()
        fig = None
        axe = None
        scatters = dict()

    # how many images we have
    min_frame_id = min(f for f in pose_ids)
    frames_mod = max(f for f in pose_ids) - min_frame_id + 1
    skel_ours = Skeleton(frames_mod=frames_mod,
                         n_actors=args.n_actors,
                         min_frame_id=min_frame_id)
    skel_ours_2d = Skeleton(frames_mod=frames_mod,
                            n_actors=args.n_actors,
                            min_frame_id=min_frame_id)

    # assert len(images) == 0 or max(f for f in images) + 1 == frames_mod, \
    #     "Assumed image count is %d, but max_frame_id is %d" \
    #     % (len(images), frames_mod-1)
    if isinstance(data, DataPosesWrapper):
        frames = data.get_frames()
    else:
        frames = []
        for frame_str in sorted(data.get_frames()):
            try:
                frame_id = int(frame_str.split('_')[1])
            except ValueError:
                print("skipping key %s" % frame_id)
                continue
            frames.append(frame_id)
    my_visibilities = [[], []]
    for frame_id in frames:
        frame_str = DataPosesWrapper._to_frame_str(frame_id)
        pose_in = data.get_poses_3d(frame_id=frame_id)
        # np.asarray(data[frame_str][u'centered_3d'])
        # pose_in_2d = np.asarray(data[frame_str][u'pose_2d'])
        pose_in_2d = data.get_poses_2d(frame_id=frame_id)
        # visible = np.asarray(data[frame_str][u'visible'])

        if False and len(pose_in.shape) > 2:
            pose_id = pose_ids[frame_id]
            if not args.no_img:
                im = cv2.cvtColor(images[frame_id], cv2.COLOR_RGB2BGR)
                for i in range(pose_in.shape[0]):
                    c = (1., 0., 0., 1.)
                    if i == pose_id:
                        c = (0., 1., 0., 1.)
                    color = tuple(int(c_ * 255) for c_ in c[:3])
                    for p2d in pose_in_2d[i, :, :]:
                        # color = (c[0] * 255, c[1] * 255., c[2] * 255.)
                        cv2.circle(im, (p2d[1], p2d[0]),
                                   radius=3,
                                   color=color,
                                   thickness=-1)
                    center = np.mean(pose_in_2d[i, :, :],
                                     axis=0).round().astype('i4').tolist()
                    cv2.putText(im, "%d" % i, (center[1], center[0]), 1, 1,
                                color)
                if show:
                    cv2.imshow("im", im)
                    cv2.waitKey(100)
            # if sid not in scatters:
            #     scatters[sid] = axe.scatter(pose_in_2d[i, :, 1], pose_in_2d[i, :, 0], c=c)
            # else:
            #     scatters[sid].set_offsets(pose_in_2d[i, :, [1, 0]])
            #     scatters[sid].set_array(np.tile(np.array(c), pose_in_2d.shape[1]))
            # scatter.set_color(c)
            # plt.draw()
            # plt.pause(1.)
            pose_in = pose_in[pose_id, :, :]
            pose_in_2d = pose_in_2d[pose_id, :, :]
            visible = visible[pose_id]
        # else:
        # pose_id = 0
        # pose_id = pose_ids[frame_id]

        for actor_id in range(args.n_actors):
            # if actor_id in (2, 3, 4, 5, 8, 9)
            # expanded frame_id
            frame_id2 = Skeleton.unmod_frame_id(frame_id=frame_id,
                                                actor_id=actor_id,
                                                frames_mod=frames_mod)
            assert (actor_id != 0) ^ (frame_id2 == frame_id), "no"
            frame_id_mod = skel_ours.mod_frame_id(frame_id=frame_id2)

            assert frame_id_mod == frame_id, \
                "No: %d %d %d" % (frame_id, frame_id2, frame_id_mod)
            actor_id2 = skel_ours.get_actor_id(frame_id2)
            assert actor_id2 == actor_id, "no: %s %s" % (actor_id, actor_id2)

            # which pose explains this actor in this frame
            pose_id = pose_ids[frame_id][actor_id]
            # check, if actor found
            if pose_id < 0:
                continue

            # 3D pose
            pose = pose_in[pose_id, :, JointDenis.revmap].T
            # added by Aron on 4/4/2018 (Denis' pelvis is too high up)
            pose[:, Joint.PELV] = (pose[:, Joint.LHIP] + pose[:, Joint.RHIP]) \
                                  / 2.
            skel_ours.set_pose(frame_id2, pose)

            # 2D pose
            pose_2d = pose_in_2d[pose_id, :, :]
            arr = np.array(JointDenis.pose_2d_to_ours(pose_2d),
                           dtype=np.float32).T
            skel_ours_2d.set_pose(frame_id2, arr)

            #
            # visibility (binary) and confidence (float)
            #

            # np.asarray(data[frame_str][u'visible'][pose_id])
            vis_i = data.get_visibilities(frame_id)[pose_id]

            # vis_f = np.asarray(data[frame_str][u'visible_float'][pose_id])
            vis_f = data.get_confidences(frame_id)[pose_id]
            for jid, visible in enumerate(vis_i):  # for each joint
                # binary visibility
                jid_ours = JointDenis.to_ours_2d(jid)
                skel_ours_2d.set_visible(frame_id2, jid_ours, visible)

                # confidence (fractional visibility)
                if np.isnan(vis_f[jid]):
                    continue

                try:
                    visible_f[actor_id][frame_id2][jid_ours] = vis_f[jid]
                except KeyError:
                    visible_f[actor_id][frame_id2] = {jid_ours: vis_f[jid]}
                visible_f_max = max(visible_f_max, vis_f[jid])
                conf_ = get_conf_thresholded(vis_f[jid],
                                             thresh_log_conf=None,
                                             dtype_np=np.float32)
                skel_ours_2d.set_confidence(frame_id=frame_id2,
                                            joint=jid_ours,
                                            confidence=conf_)
                my_visibilities[0].append(vis_f[jid])
                my_visibilities[1].append(conf_)
            skel_ours_2d._confidence_normalized = True

    plt.figure()
    plt.plot(my_visibilities[0], my_visibilities[1], 'o')
    plt.savefig('confidences.pdf')

    assert skel_ours.n_actors == args.n_actors, "no"
    assert skel_ours_2d.n_actors == args.n_actors, "no"
    # align to room
    min_z = np.min(skel_ours.poses[:, 2, :])
    print("min_max: %s, %s" % (min_z, np.max(skel_ours.poses[:, 2, :])))
    skel_ours.poses[:, 2, :] += min_z
    skel_ours.poses /= 1000.
    # The output is scaled to 2m by Denis.
    # We change this to 1.8 * a scale in order to correct for
    # the skeletons being a bit too high still.
    skel_ours.poses *= \
        args.person_height * conf.optimize_path.height_correction / 2.
    skel_ours.poses[:, 2, :] *= -1.
    skel_ours.poses = skel_ours.poses[:, [0, 2, 1], :]

    # refine
    name_video = args.dir.split(os.sep)[-2]
    out_path = os.path.join(args.dir, os.pardir,
                            "skel_%s_%s.json" % (name_video, args.postfix))
    out_path_orig = os.path.join(args.dir, os.pardir,
                                 "skel_%s_lfd_orig.json" % name_video)
    sclt_orig = Scenelet(skeleton=copy.deepcopy(skel_ours))
    sclt_orig.save(out_path_orig)

    skel_ours_2d_all = copy.deepcopy(skel_ours_2d)
    assert len(skel_ours_2d_all.get_frames()), skel_ours_2d_all.get_frames()

    #
    # Optimize
    #

    # frames_ignore = [(282, 372), (516, 1000)]

    skel_ours, skel_ours_2d, intrinsics, \
    frame_ids_filled_in = prepare(
      args.camera_name,
      winsorize_limit=args.winsorize_limit,
      shape_orig=shape_orig,
      path_scene=p_scene,
      skel_ours_2d=skel_ours_2d,
      skel_ours=skel_ours,
      resample=args.resample,
    path_skel=path_skeleton)
    frames_ignore = []
    tr_ground = np.eye(4, dtype=np.float32)
    skel_opt, out_images, K = \
        optimize_path(
          skel_ours, skel_ours_2d, images, intrinsics=intrinsics,
          path_skel=out_path, shape_orig=shape_orig,
          use_huber=args.huber, weight_smooth=args.smooth,
          frames_ignore=frames_ignore, resample=args.resample,
          depth_init=scene_params['depth_init'],
          ground_rot=ground_rot)

    for frame_id in skel_opt.get_frames():
        skel_opt.set_time(frame_id=frame_id, time=float(frame_id) / args.r)

    skel_opt_raw = copy.deepcopy(skel_opt)
    skel_opt_resampled = Skeleton.resample(skel_opt)

    # Filter pelvis
    if args.with_filtering:
        out_filter_path = os.path.join(args.dir, os.pardir, "vis_filtering")
        skel_opt = filter_(skel_opt_resampled,
                           out_filter_path=out_filter_path,
                           skel_orig=skel_opt,
                           weight_smooth=args.smooth,
                           forwards_window_size=args.forwards_window_size)
    else:
        skel_opt.estimate_forwards(k=args.forwards_window_size)
        skel_opt_resampled.estimate_forwards(k=args.forwards_window_size)

    # if len(images):
    #     skel_opt.fill_with_closest(images.keys()[0], images.keys()[-1])

    min_y, max_y = skel_opt.get_min_y(tr_ground)
    print("min_y: %s, max_y: %s" % (min_y, max_y))

    #
    # save
    #
    frame_ids_old = set(skel_opt.get_frames())
    if args.resample:
        skel_opt = skel_opt_resampled
        frame_ids_filled_in.update(
            set(skel_opt.get_frames()).difference(frame_ids_old))
        lg.warning("Saving resampled scenelet!")
    scenelet = Scenelet(skel_opt)
    del skel_opt
    # skel_dict = skel_opt.to_json()
    tr_ground[1, 3] = min_y
    scenelet.aux_info['ground'] = tr_ground.tolist()
    assert isinstance(ground_rot, list) and len(ground_rot) == 3
    scenelet.add_aux_info('ground_rot', ground_rot)
    scenelet.add_aux_info(
        'path_opt_params', {
            'rate': args.r,
            'w-smooth': args.smooth,
            'winsorize-limit': args.winsorize_limit,
            'camera': args.camera_name,
            'huber': args.huber,
            'height_correction': conf.optimize_path.height_correction,
            'focal_correction': conf.optimize_path.focal_correction
        })
    scenelet.add_aux_info('frame_ids_filled_in', list(frame_ids_filled_in))

    # To MATLAB
    # _skeleton.get_min_y(_tr_ground)
    # with skel_opt as skeleton:
    # skeleton = skel_opt
    # skeleton_name = os.path.split(args.dir)[0]
    # skeleton_name = skeleton_name[skeleton_name.rfind('/')+1:]
    # mdict = skeleton.to_mdict(skeleton_name)
    # mdict['room_transform'] = tr_ground
    # mdict['room_transform'][1, 3] *= -1.
    # print(mdict)
    # print("scene_name?: %s" % os.path.split(args.dir)[0])
    # skeleton.save_matlab(
    #     os.path.join(os.path.dirname(args.dir), "skeleton_opt.mat"),
    #     mdict=mdict)

    assert scenelet.skeleton.has_forwards(), "No forwards??"
    scenelet.save(out_path)
    if show:
        # save path plot
        out_path_path = os.path.join(args.dir, os.pardir,
                                     "%s_path.jpg" % name_video)
        path_fig = plot_path(scenelet.skeleton)
        legend = ["smooth %g" % args.smooth]

    # hack debug
    # path_skel2 = os.path.join(args.dir, os.pardir, 'skel_lobby7_nosmooth.json')
    # if os.path.exists(path_skel2):
    #     skel2 = Skeleton.load(path_skel2)
    #     path_fig = plot_path(skel2, path_fig)
    #     legend.append('no smooth')
    if show:
        plt.legend(legend)
        path_fig.savefig(out_path_path)

    # backup args
    path_args = os.path.join(args.dir, os.pardir, 'args_denis.txt')
    with open(path_args, 'a') as f_args:
        f_args.write("%s %s\n" %
                     (os.path.basename(sys.executable), " ".join(argv)))

    # save 2D detections to file
    if args.postfix == 'unannot':
        path_skel_ours_2d = os.path.join(
            args.dir, os.pardir, "skel_%s_2d_%02d.json" % (name_video, 0))
        sclt_2d = Scenelet(skel_ours_2d_all)
        print('Saving {} to {}'.format(len(skel_ours_2d_all.get_frames()),
                                       path_skel_ours_2d))
        sclt_2d.skeleton.aux_info = {}
        sclt_2d.save(path_skel_ours_2d)
    else:
        print(args.postfix)

    logging.info("Saving images...")
    if len(images) and len(out_images):
        path_out_images = os.path.join(args.dir, os.pardir, 'color')
        try:
            os.makedirs(path_out_images)
        except OSError:
            pass
        visible_f_max_log = np.log(visible_f_max)
        frames = list(out_images.keys())
        for frame_id in range(frames[0], frames[-1] + 1):
            im = out_images[frame_id] if frame_id in out_images \
                else cv2.cvtColor(images[frame_id], cv2.COLOR_BGR2RGB)
            for actor_id in range(args.n_actors):
                if frame_id in visible_f[actor_id]:
                    frame_id2 = skel_ours_2d_all.unmod_frame_id(
                        frame_id=frame_id,
                        actor_id=actor_id,
                        frames_mod=skel_ours_2d_all.frames_mod)
                    for joint, is_vis in visible_f[actor_id][frame_id].items():
                        p2d = skel_ours_2d_all.get_joint_3d(joint,
                                                            frame_id=frame_id2)
                        # radius = np.log(is_vis) / visible_f_max_log
                        # lg.debug("r0: %g" % radius)
                        # radius = np.exp(np.log(is_vis) / visible_f_max_log)
                        # lg.debug("radius is %g" % radius)
                        vis_bool = True
                        if skel_ours_2d_all.has_visible(frame_id=frame_id2,
                                                        joint_id=joint):
                            vis_bool &= skel_ours_2d_all.is_visible(
                                frame_id2, joint)
                        radius = abs(np.log(is_vis / 0.1 + 1e-6))
                        if not np.isnan(radius):
                            p2d = (int(round(p2d[0])), int(round(p2d[1])))
                            cv2.circle(im,
                                       center=p2d,
                                       radius=int(round(radius)),
                                       color=(1., 1., 1., 0.5),
                                       thickness=1)
                            conf = get_conf_thresholded(conf=is_vis,
                                                        thresh_log_conf=None,
                                                        dtype_np=np.float32)
                            if conf > 0.5:
                                cv2.putText(img=im,
                                            text=Joint(joint).get_name(),
                                            org=p2d,
                                            fontFace=1,
                                            fontScale=1,
                                            color=(10., 150., 10., 100.))
                    # lg.debug("set visibility to %g, radius %g" % (is_vis, radius))
            # if frame_id in out_images:
            scale = (shape_orig[1] / float(im.shape[1]),
                     shape_orig[0] / float(im.shape[0]))
            cv2.imwrite(
                os.path.join(path_out_images, "color_%05d.jpg" % frame_id),
                cv2.resize(im, (0, 0),
                           fx=scale[0],
                           fy=scale[1],
                           interpolation=cv2.INTER_CUBIC))
            # else:
            #     fname = "color_%05d.jpg" % frame_id
            #     shutil.copyfile(
            #         os.path.join(path_images, fname),
            #         os.path.join(path_out_images, fname))
        lg.info("Wrote images to %s/" % path_out_images)