Пример #1
0
    def upscale(self, img_path, save_intermediate=False, return_image=False, suffix="scaled",
                patch_size=8, mode="patch", verbose=True):
        """
        Standard method to upscale an image.

        :param img_path:  path to the image
        :param save_intermediate: saves the intermediate upscaled image (bilinear upscale)
        :param return_image: returns a image of shape (height, width, channels).
        :param suffix: suffix of upscaled image
        :param patch_size: size of each patch grid
        :param verbose: whether to print messages
        :param mode: mode of upscaling. Can be "patch" or "fast"
        """
        import os
        from scipy.misc import imread, imresize, imsave

        # Destination path
        path = os.path.splitext(img_path)
        filename = path[0] + "_" + suffix + "(%dx)" % (self.scale_factor) + path[1]

        # Read image
        scale_factor = int(self.scale_factor)
        true_img = imread(img_path, mode='RGB')
        init_width, init_height = true_img.shape[0], true_img.shape[1]
        if verbose: print("Old Size : ", true_img.shape)
        if verbose: print("New Size : (%d, %d, 3)" % (init_height * scale_factor, init_width * scale_factor))

        img_height, img_width = 0, 0

        if mode == "patch" and self.type_true_upscaling:
            # Overriding mode for True Upscaling models
            mode = 'fast'
            print("Patch mode does not work with True Upscaling models yet. Defaulting to mode='fast'")

        if mode == 'patch':
            # Create patches
            if self.type_requires_divisible_shape:
                if patch_size % 4 != 0:
                    print("Deep Denoise requires patch size which is multiple of 4.\nSetting patch_size = 8.")
                    patch_size = 8

            images = img_utils.make_patches(true_img, scale_factor, patch_size, verbose)

            nb_images = images.shape[0]
            img_width, img_height = images.shape[1], images.shape[2]
            print("Number of patches = %d, Patch Shape = (%d, %d)" % (nb_images, img_height, img_width))
        else:
            # Use full image for super resolution
            img_width, img_height = self.__match_autoencoder_size(img_height, img_width, init_height,
                                                                  init_width, scale_factor)

            images = imresize(true_img, (img_width, img_height))
            images = np.expand_dims(images, axis=0)
            print("Image is reshaped to : (%d, %d, %d)" % (images.shape[1], images.shape[2], images.shape[3]))

        # Save intermediate bilinear scaled image is needed for comparison.
        intermediate_img = None
        if save_intermediate:
            if verbose: print("Saving intermediate image.")
            fn = path[0] + "_intermediate_" + path[1]
            intermediate_img = imresize(true_img, (init_width * scale_factor, init_height * scale_factor))
            imsave(fn, intermediate_img)

        # Transpose and Process images
        if K.image_dim_ordering() == "th":
            img_conv = images.transpose((0, 3, 1, 2)).astype(np.float32) / 255.
        else:
            img_conv = images.astype(np.float32) / 255.

        model = self.create_model(img_height, img_width, load_weights=True)
        if verbose: print("Model loaded.")

        # Create prediction for image patches
        result = model.predict(img_conv, batch_size=128, verbose=verbose)

        if verbose: print("De-processing images.")

         # Deprocess patches
        if K.image_dim_ordering() == "th":
            result = result.transpose((0, 2, 3, 1)).astype(np.float32) * 255.
        else:
            result = result.astype(np.float32) * 255.

        # Output shape is (original_width * scale, original_height * scale, nb_channels)
        if mode == 'patch':
            out_shape = (init_width * scale_factor, init_height * scale_factor, 3)
            result = img_utils.combine_patches(result, out_shape, scale_factor)
        else:
            result = result[0, :, :, :] # Access the 3 Dimensional image vector

        result = np.clip(result, 0, 255).astype('uint8')

        result = cv2.pyrUp(result)
        result = cv2.medianBlur(result, 3)
        result = cv2.pyrDown(result)

        if verbose: print("\nCompleted De-processing image.")

        if return_image:
            # Return the image without saving. Useful for testing images.
            return result

        if verbose: print("Saving image.")
        imsave(filename, result)
Пример #2
0
imsave(filename, result)

#%%

img_path = "/opt/EuroSAT/Test/output/Highway_47.jpg"
#img_path = "/opt/EuroSAT/Test/output/Highway_58.jpg"
#img_path = "/opt/EuroSAT/Test/output/Highway_63.jpg"
path = os.path.splitext(img_path)
filename = path[0] + "_" + suffix + "(%dx)" % (scaling_factor) + path[1]
true_img = imread(img_path, mode='RGB')
init_dim_1, init_dim_2 = true_img.shape[0], true_img.shape[1]
if verbose: 
    print("Old Size : ", true_img.shape)
    print("New Size : (%d, %d, 3)" % (init_dim_1 * scaling_factor, init_dim_2 * scaling_factor))

images = make_patches(true_img, scaling_factor, patch_size, verbose)

nb_images = images.shape[0]
img_dim_1, img_dim_2 = images.shape[1], images.shape[2]
print("Number of patches = %d, Patch Shape = (%d, %d)" % (nb_images, img_dim_2, img_dim_1))

if verbose: print("Saving intermediate image...")
fn = path[0] + "_intermediate_" + path[1]
intermediate_img = imresize(true_img, (init_dim_1 * scaling_factor, init_dim_2 * scaling_factor))
imsave(fn, intermediate_img)

img_conv = images.astype(np.float32) / 255.

result = model.predict(img_conv, batch_size=64, verbose=verbose)
if verbose: print("De-processing images...")
result = result.astype(np.float32) * 255.
Пример #3
0
    def upscale(self,
                img_path,
                scale_factor=2,
                save_intermediate=False,
                return_image=False,
                suffix="scaled",
                patch_size=8,
                mode="patch",
                verbose=True,
                evaluate=True):
        """
        Standard method to upscale an image.

        :param img_path:  path to the image
        :param scale_factor: scale factor can be any value, usually is an integer
        :param save_intermediate: saves the intermediate upscaled image (bilinear upscale)
        :param return_image: returns a image of shape (height, width, channels).
        :param suffix: suffix of upscaled image
        :param patch_size: size of each patch grid
        :param verbose: whether to print messages
        :param evaluate: evaluate the upscaled image on the original image.
        """
        import os
        from scipy.misc import imread, imresize, imsave

        # Destination path
        path = os.path.splitext(img_path)
        filename = path[0] + "_" + suffix + "(%dx)" % (scale_factor) + path[1]

        # Read image
        scale_factor = int(scale_factor)
        true_img = imread(img_path, mode='RGB')
        init_width, init_height = true_img.shape[0], true_img.shape[1]
        if verbose: print("Old Size : ", true_img.shape)
        if verbose:
            print("New Size : (%d, %d, 3)" %
                  (init_height * scale_factor, init_width * scale_factor))

        img_height, img_width = 0, 0

        if mode == 'patch':
            # Create patches
            if self.model_name in self.denoise_models:
                if patch_size % 4 != 0:
                    print(
                        "Deep Denoise requires patch size which is multiple of 4.\nSetting patch_size = 8."
                    )
                    patch_size = 8

            images = img_utils.make_patches(true_img, scale_factor, patch_size,
                                            verbose)

            nb_images = images.shape[0]
            img_width, img_height = images.shape[1], images.shape[2]
            print("Number of patches = %d, Patch Shape = (%d, %d)" %
                  (nb_images, img_height, img_width))
        else:
            # Use full image for super resolution
            img_width, img_height = self.__match_denoise_size(
                denoise_models, img_height, img_width, init_height, init_width,
                scale_factor)

            images = imresize(true_img, (img_width, img_height))
            images = np.expand_dims(images, axis=0)
            print("Image is reshaped to : (%d, %d, %d)" %
                  (images.shape[1], images.shape[2], images.shape[3]))

        # Save intermediate bilinear scaled image is needed for comparison.
        intermediate_img = None
        if save_intermediate:
            if verbose: print("Saving intermediate image.")
            fn = path[0] + "_intermediate_" + path[1]
            intermediate_img = imresize(
                true_img,
                (init_width * scale_factor, init_height * scale_factor))
            imsave(fn, intermediate_img)

        # Transpose and Process images
        if K.image_dim_ordering() == "th":
            img_conv = images.transpose((0, 3, 1, 2)).astype(np.float32) / 255.
        else:
            img_conv = images.astype(np.float32) / 255.

        model = self.create_model(img_height, img_width, load_weights=True)
        if verbose: print("Model loaded.")

        # Create prediction for image patches
        result = model.predict(img_conv, batch_size=128, verbose=verbose)

        if verbose: print("De-processing images.")

        # Deprocess patches
        if K.image_dim_ordering() == "th":
            result = result.transpose((0, 2, 3, 1)).astype(np.float32) * 255.
        else:
            result = result.astype(np.float32) * 255.

        # Output shape is (original_width * scale, original_height * scale, nb_channels)
        if mode == 'patch':
            out_shape = (init_width * scale_factor, init_height * scale_factor,
                         3)
            result = img_utils.combine_patches(result, out_shape, scale_factor)
        else:
            result = result[
                0, :, :, :]  # Access the 3 Dimensional image vector

        result = np.clip(result, 0, 255).astype('uint8')

        if verbose: print("\nCompleted De-processing image.")

        if return_image:
            # Return the image without saving. Useful for testing images.
            return result

        if verbose: print("Saving image.")
        imsave(filename, result)

        if evaluate:
            if verbose: print("Evaluating results.")
            # Convert initial image into correct format
            if intermediate_img is None:
                intermediate_img = imresize(
                    true_img,
                    (init_width * scale_factor, init_height * scale_factor))

            if mode == 'patch':
                intermediate_img = img_utils.make_patches(intermediate_img,
                                                          scale_factor,
                                                          patch_size,
                                                          upscale=False)
            else:
                img_width, img_height = self.__match_denoise_size(
                    denoise_models, img_height, img_width, init_height,
                    init_width, scale_factor)

                intermediate_img = imresize(true_img, (img_width, img_height))
                intermediate_img = np.expand_dims(intermediate_img, axis=0)

            if K.image_dim_ordering() == "th":
                intermediate_img = intermediate_img.transpose(
                    (0, 3, 1, 2)).astype(np.float32) / 255.
            else:
                intermediate_img = intermediate_img.astype(np.float32) / 255.

            eval_model = self.create_model(img_height,
                                           img_width,
                                           load_weights=True)

            # Evaluating the initial image patches, which gets transformed to the output image, to the input image
            error = eval_model.evaluate(img_conv,
                                        intermediate_img,
                                        batch_size=128)
            print("\nMean Squared Error of %s  : " % (self.model_name),
                  error[0])
            print("Peak Signal to Noise Ratio of %s : " % (self.model_name),
                  error[1])
Пример #4
0
    def upscale(self, img_path, scale_factor=2, save_intermediate=False, return_image=False, suffix="scaled",
                patch_size=8, mode="patch", verbose=True, evaluate=True):
        """
        Standard method to upscale an image.

        :param img_path:  path to the image
        :param scale_factor: scale factor can be any value, usually is an integer
        :param save_intermediate: saves the intermediate upscaled image (bilinear upscale)
        :param return_image: returns a image of shape (height, width, channels).
        :param suffix: suffix of upscaled image
        :param patch_size: size of each patch grid
        :param verbose: whether to print messages
        :param evaluate: evaluate the upscaled image on the original image.
        """
        import os
        from scipy.misc import imread, imresize, imsave

        # Destination path
        path = os.path.splitext(img_path)
        filename = path[0] + "_" + suffix + "(%dx)" % (scale_factor) + path[1]

        # Read image
        scale_factor = int(scale_factor)
        true_img = imread(img_path, mode='RGB')
        init_width, init_height = true_img.shape[0], true_img.shape[1]
        if verbose: print("Old Size : ", true_img.shape)
        if verbose: print("New Size : (%d, %d, 3)" % (init_height * scale_factor, init_width * scale_factor))

        img_height, img_width = 0, 0

        if mode == 'patch':
            # Create patches
            if self.model_name in self.denoise_models:
                if patch_size % 4 != 0:
                    print("Deep Denoise requires patch size which is multiple of 4.\nSetting patch_size = 8.")
                    patch_size = 8

            images = img_utils.make_patches(true_img, scale_factor, patch_size, verbose)

            nb_images = images.shape[0]
            img_width, img_height = images.shape[1], images.shape[2]
            print("Number of patches = %d, Patch Shape = (%d, %d)" % (nb_images, img_height, img_width))
        else:
            # Use full image for super resolution
            img_width, img_height = self.__match_denoise_size(denoise_models, img_height, img_width, init_height,
                                                              init_width, scale_factor)

            images = imresize(true_img, (img_width, img_height))
            images = np.expand_dims(images, axis=0)
            print("Image is reshaped to : (%d, %d, %d)" % (images.shape[1], images.shape[2], images.shape[3]))

        # Save intermediate bilinear scaled image is needed for comparison.
        intermediate_img = None
        if save_intermediate:
            if verbose: print("Saving intermediate image.")
            fn = path[0] + "_intermediate_" + path[1]
            intermediate_img = imresize(true_img, (init_width * scale_factor, init_height * scale_factor))
            imsave(fn, intermediate_img)

        # Transpose and Process images
        if K.image_dim_ordering() == "th":
            img_conv = images.transpose((0, 3, 1, 2)).astype(np.float32) / 255.
        else:
            img_conv = images.astype(np.float32) / 255.

        model = self.create_model(img_height, img_width, load_weights=True)
        if verbose: print("Model loaded.")

        # Create prediction for image patches
        result = model.predict(img_conv, batch_size=128, verbose=verbose)

        if verbose: print("De-processing images.")

         # Deprocess patches
        if K.image_dim_ordering() == "th":
            result = result.transpose((0, 2, 3, 1)).astype(np.float32) * 255.
        else:
            result = result.astype(np.float32) * 255.

        # Output shape is (original_width * scale, original_height * scale, nb_channels)
        if mode == 'patch':
            out_shape = (init_width * scale_factor, init_height * scale_factor, 3)
            result = img_utils.combine_patches(result, out_shape, scale_factor)
        else:
            result = result[0, :, :, :] # Access the 3 Dimensional image vector

        result = np.clip(result, 0, 255).astype('uint8')

        if verbose: print("\nCompleted De-processing image.")

        if return_image:
            # Return the image without saving. Useful for testing images.
            return result

        if verbose: print("Saving image.")
        imsave(filename, result)

        if evaluate:
            if verbose: print("Evaluating results.")
            # Convert initial image into correct format
            if intermediate_img is None:
                intermediate_img = imresize(true_img, (init_width * scale_factor, init_height * scale_factor))

            if mode == 'patch':
                intermediate_img = img_utils.make_patches(intermediate_img, scale_factor, patch_size, upscale=False)
            else:
                img_width, img_height = self.__match_denoise_size(denoise_models, img_height, img_width, init_height,
                                                                  init_width, scale_factor)

                intermediate_img = imresize(true_img, (img_width, img_height))
                intermediate_img = np.expand_dims(intermediate_img, axis=0)

            if K.image_dim_ordering() == "th":
                intermediate_img = intermediate_img.transpose((0, 3, 1, 2)).astype(np.float32) / 255.
            else:
                intermediate_img = intermediate_img.astype(np.float32) / 255.

            eval_model = self.create_model(img_height, img_width, load_weights=True)

            # Evaluating the initial image patches, which gets transformed to the output image, to the input image
            error = eval_model.evaluate(img_conv, intermediate_img, batch_size=128)
            print("\nMean Squared Error of %s  : " % (self.model_name), error[0])
            print("Peak Signal to Noise Ratio of %s : " % (self.model_name), error[1])