string = f.read() model = load_model(model_path) model.compile("adadelta", dummy_loss) model.load_weights(weights_path) size_multiple = 4 if len( model.layers ) == 69 else 8 # 69 layers in shallow model, 73 in deeper model img = img_utils.preprocess_image(content_path, load_dims=True, resize=True, img_width=-1, img_height=-1, size_multiple=size_multiple) img /= 255. width, height = img.shape[2], img.shape[3] t1 = time.time() output = model.predict_on_batch(img) t2 = time.time() print("Saved image : %s" % output_image) print("Prediction time : %0.2f seconds" % (t2 - t1)) img = output[0, :, :, :] img = img_utils.deprocess_image(img) img_utils.save_result(img, output_image, width, height)
validation_fastnet.create_model(validation_path=path) validation_fastnet.model.compile(optimizer, dummy_loss) else: validation_fastnet.model.load_weights(path) y_pred = validation_fastnet.fastnet_predict(x) y_pred = y_pred[0, :, :, :] y_pred = y_pred.transpose((1, 2, 0)) print("Mean per channel : ", np.mean(y_pred, axis=(0, 1))) y_pred = np.clip(y_pred, 0, 255).astype('uint8') path = "val_epoch_%d_at_iteration_%d.png" % (i + 1, iteration) img_utils.save_result(y_pred, path, directory="val_imgs/") path = "val_imgs/" + path print("Validation image saved at : %s" % path) if iteration >= num_iter: break except KeyboardInterrupt: print("Keyboard interrupt detected. Stopping early.") early_stop = True break iteration = 0 if early_stop: