def chapter_augmenters_removesaturation(): fn_start = "color/removesaturation" aug = iaa.RemoveSaturation() run_and_save_augseq(fn_start + ".jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2) aug = iaa.RemoveSaturation(1.0) run_and_save_augseq(fn_start + "_all.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2)
def train(model): """Train the model.""" # Training dataset. dataset_train = CharacterDataset() dataset_train.load_characters("train") dataset_train.prepare() # Validation dataset dataset_val = CharacterDataset() dataset_val.load_characters("val") dataset_val.prepare() #Augmentation aug = iaa.SomeOf(2, [ iaa.AdditiveGaussianNoise(scale=(0, 0.10 * 255)), iaa.MotionBlur(), iaa.GaussianBlur(sigma=(0.0, 2.0)), iaa.RemoveSaturation(mul=(0, 0.5)), iaa.GammaContrast(), iaa.Rotate(rotate=(-45, 45)), iaa.PerspectiveTransform(scale=(0.01, 0.15)), iaa.JpegCompression(compression=(0, 75)), iaa.imgcorruptlike.Spatter(severity=(1, 4)), iaa.Rain(speed=(0.1, 0.3)), iaa.Fog() ]) custom_callbacks = [ ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1), EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) ] # *** This training schedule is an example. Update to your needs *** # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=100, layers='heads', augmentation=aug, custom_callbacks=custom_callbacks)
def train(model): """Train the model.""" # Training dataset. dataset_train = PlateDataset() dataset_train.load_plates("train") dataset_train.prepare() # Validation dataset dataset_val = PlateDataset() dataset_val.load_plates("val") dataset_val.prepare() #Augmentation aug = iaa.OneOf([ iaa.GaussianBlur(sigma=(0, 1.0)), iaa.MotionBlur(), iaa.RemoveSaturation((0.0, 0.5)), iaa.GammaContrast(), iaa.Rotate(rotate=(-45, 45)), iaa.PerspectiveTransform(scale=(0.01, 0.15)), iaa.SaltAndPepper(), iaa.JpegCompression(compression=(0, 75)), iaa.imgcorruptlike.Spatter(severity=(1, 4)), iaa.imgcorruptlike.DefocusBlur(severity=1) ]) custom_callbacks = [ ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1), EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) ] # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=100, layers='all', augmentation=aug, custom_callbacks=custom_callbacks)
def main(): urls = [ ("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/" "Sarcophilus_harrisii_taranna.jpg/" "320px-Sarcophilus_harrisii_taranna.jpg"), ("https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/" "Vincent_van_Gogh_-_Wheatfield_with_crows_-_Google_Art_Project.jpg/" "320px-Vincent_van_Gogh_-_Wheatfield_with_crows_-_Google_Art_Project" ".jpg"), ("https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/" "Galerella_sanguinea_Zoo_Praha_2011-2.jpg/207px-Galerella_sanguinea_" "Zoo_Praha_2011-2.jpg"), ("https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/" "Ambrosius_Bosschaert_the_Elder_%28Dutch_-_Flower_Still_Life_-_" "Google_Art_Project.jpg/307px-Ambrosius_Bosschaert_the_Elder_%28" "Dutch_-_Flower_Still_Life_-_Google_Art_Project.jpg") ] image = imageio.imread(urls[3]) aug = iaa.RemoveSaturation() images_aug = aug(images=[image] * (5*5)) ia.imshow(ia.draw_grid(images_aug))
import imgaug.augmenters as iaa import random import numpy as np import cv2 from PIL import Image aug_transform = iaa.SomeOf((0, None), [ iaa.OneOf([ iaa.MultiplyAndAddToBrightness(mul=(0.3, 1.6), add=(-50, 50)), iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True), iaa.ChannelShuffle(0.5), iaa.RemoveSaturation(), iaa.Grayscale(alpha=(0.0, 1.0)), iaa.ChangeColorTemperature((1100, 35000)), ]), iaa.OneOf([ iaa.MedianBlur(k=(3, 7)), iaa.BilateralBlur( d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250)), iaa.MotionBlur(k=(3, 9), angle=[-45, 45]), iaa.MeanShiftBlur(spatial_radius=(5.0, 10.0), color_radius=(5.0, 10.0)), iaa.AllChannelsCLAHE(clip_limit=(1, 10)), iaa.AllChannelsHistogramEqualization(), iaa.GammaContrast((0.5, 1.5), per_channel=True), iaa.GammaContrast((0.5, 1.5)), iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True), iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6)), iaa.HistogramEqualization(), iaa.Sharpen(alpha=0.5)
x_min = bb_box.x1 y_min = bb_box.y1 x_max = bb_box.x2 y_max = bb_box.y2 cls_id = bb_box.label x_cen, y_cen, w, h = xyxy2xywh(x_min, y_min, x_max, y_max) f.write("%d %.06f %.06f %.06f %.06f\n" % (cls_id, x_cen, y_cen, w, h)) Width = 640 Height = 640 blur = iaa.AverageBlur(k=(2, 11)) #! 2~11 random emboss = iaa.Emboss(alpha=(1.0, 1.0), strength=(2.0, 2.0)) gray = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR) contrast = iaa.AllChannelsCLAHE(clip_limit=(10, 10), per_channel=True) bright = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30)) color = iaa.pillike.EnhanceColor() sharpen = iaa.Sharpen(alpha=(0.5, 1.0)) #! 0.5 ~ 1.0 random edge = iaa.pillike.FilterEdgeEnhance() augmentations = [[bright], [emboss], [color], [edge]] #! choice augmentation ## rotates = [[iaa.Affine(rotate=90)], [iaa.Affine(rotate=180)], [iaa.Affine(rotate=270)]] flip = iaa.Fliplr(1.0) #! 100% left & right dir = "C:\\Users\\jeongseokoon\\AI-hub\\data\\original\\" save_aug_dir = "C:\\Users\\jeongseokoon\\AI-hub\\data\\images\\" #! Absolute path
def create_augmenters(height, width, height_augmentable, width_augmentable, only_augmenters): def lambda_func_images(images, random_state, parents, hooks): return images def lambda_func_heatmaps(heatmaps, random_state, parents, hooks): return heatmaps def lambda_func_keypoints(keypoints, random_state, parents, hooks): return keypoints def assertlambda_func_images(images, random_state, parents, hooks): return True def assertlambda_func_heatmaps(heatmaps, random_state, parents, hooks): return True def assertlambda_func_keypoints(keypoints, random_state, parents, hooks): return True augmenters_meta = [ iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=False, name="Sequential_2xNoop"), iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=True, name="Sequential_2xNoop_random_order"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=False, name="SomeOf_3xNoop"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=True, name="SomeOf_3xNoop_random_order"), iaa.OneOf([iaa.Noop(), iaa.Noop(), iaa.Noop()], name="OneOf_3xNoop"), iaa.Sometimes(0.5, iaa.Noop(), name="Sometimes_Noop"), iaa.WithChannels([1, 2], iaa.Noop(), name="WithChannels_1_and_2_Noop"), iaa.Identity(name="Identity"), iaa.Noop(name="Noop"), iaa.Lambda(func_images=lambda_func_images, func_heatmaps=lambda_func_heatmaps, func_keypoints=lambda_func_keypoints, name="Lambda"), iaa.AssertLambda(func_images=assertlambda_func_images, func_heatmaps=assertlambda_func_heatmaps, func_keypoints=assertlambda_func_keypoints, name="AssertLambda"), iaa.AssertShape((None, height_augmentable, width_augmentable, None), name="AssertShape"), iaa.ChannelShuffle(0.5, name="ChannelShuffle") ] augmenters_arithmetic = [ iaa.Add((-10, 10), name="Add"), iaa.AddElementwise((-10, 10), name="AddElementwise"), #iaa.AddElementwise((-500, 500), name="AddElementwise"), iaa.AdditiveGaussianNoise(scale=(5, 10), name="AdditiveGaussianNoise"), iaa.AdditiveLaplaceNoise(scale=(5, 10), name="AdditiveLaplaceNoise"), iaa.AdditivePoissonNoise(lam=(1, 5), name="AdditivePoissonNoise"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"), iaa.Cutout(nb_iterations=1, name="Cutout-fill_constant"), iaa.Dropout((0.01, 0.05), name="Dropout"), iaa.CoarseDropout((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseDropout"), iaa.Dropout2d(0.1, name="Dropout2d"), iaa.TotalDropout(0.1, name="TotalDropout"), iaa.ReplaceElementwise((0.01, 0.05), (0, 255), name="ReplaceElementwise"), #iaa.ReplaceElementwise((0.95, 0.99), (0, 255), name="ReplaceElementwise"), iaa.SaltAndPepper((0.01, 0.05), name="SaltAndPepper"), iaa.ImpulseNoise((0.01, 0.05), name="ImpulseNoise"), iaa.CoarseSaltAndPepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSaltAndPepper"), iaa.Salt((0.01, 0.05), name="Salt"), iaa.CoarseSalt((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSalt"), iaa.Pepper((0.01, 0.05), name="Pepper"), iaa.CoarsePepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarsePepper"), iaa.Invert(0.1, name="Invert"), # ContrastNormalization iaa.JpegCompression((50, 99), name="JpegCompression") ] augmenters_artistic = [ iaa.Cartoon(name="Cartoon") ] augmenters_blend = [ iaa.BlendAlpha((0.01, 0.99), iaa.Identity(), name="Alpha"), iaa.BlendAlphaElementwise((0.01, 0.99), iaa.Identity(), name="AlphaElementwise"), iaa.BlendAlphaSimplexNoise(iaa.Identity(), name="SimplexNoiseAlpha"), iaa.BlendAlphaFrequencyNoise((-2.0, 2.0), iaa.Identity(), name="FrequencyNoiseAlpha"), iaa.BlendAlphaSomeColors(iaa.Identity(), name="BlendAlphaSomeColors"), iaa.BlendAlphaHorizontalLinearGradient(iaa.Identity(), name="BlendAlphaHorizontalLinearGradient"), iaa.BlendAlphaVerticalLinearGradient(iaa.Identity(), name="BlendAlphaVerticalLinearGradient"), iaa.BlendAlphaRegularGrid(nb_rows=(2, 8), nb_cols=(2, 8), foreground=iaa.Identity(), name="BlendAlphaRegularGrid"), iaa.BlendAlphaCheckerboard(nb_rows=(2, 8), nb_cols=(2, 8), foreground=iaa.Identity(), name="BlendAlphaCheckerboard"), # TODO BlendAlphaSegMapClassId # TODO BlendAlphaBoundingBoxes ] augmenters_blur = [ iaa.GaussianBlur(sigma=(1.0, 5.0), name="GaussianBlur"), iaa.AverageBlur(k=(3, 11), name="AverageBlur"), iaa.MedianBlur(k=(3, 11), name="MedianBlur"), iaa.BilateralBlur(d=(3, 11), name="BilateralBlur"), iaa.MotionBlur(k=(3, 11), name="MotionBlur"), iaa.MeanShiftBlur(spatial_radius=(5.0, 40.0), color_radius=(5.0, 40.0), name="MeanShiftBlur") ] augmenters_collections = [ iaa.RandAugment(n=2, m=(6, 12), name="RandAugment") ] augmenters_color = [ # InColorspace (deprecated) iaa.WithColorspace(to_colorspace="HSV", children=iaa.Noop(), name="WithColorspace"), iaa.WithBrightnessChannels(iaa.Identity(), name="WithBrightnessChannels"), iaa.MultiplyAndAddToBrightness(mul=(0.7, 1.3), add=(-30, 30), name="MultiplyAndAddToBrightness"), iaa.MultiplyBrightness((0.7, 1.3), name="MultiplyBrightness"), iaa.AddToBrightness((-30, 30), name="AddToBrightness"), iaa.WithHueAndSaturation(children=iaa.Noop(), name="WithHueAndSaturation"), iaa.MultiplyHueAndSaturation((0.8, 1.2), name="MultiplyHueAndSaturation"), iaa.MultiplyHue((-1.0, 1.0), name="MultiplyHue"), iaa.MultiplySaturation((0.8, 1.2), name="MultiplySaturation"), iaa.RemoveSaturation((0.01, 0.99), name="RemoveSaturation"), iaa.AddToHueAndSaturation((-10, 10), name="AddToHueAndSaturation"), iaa.AddToHue((-10, 10), name="AddToHue"), iaa.AddToSaturation((-10, 10), name="AddToSaturation"), iaa.ChangeColorspace(to_colorspace="HSV", name="ChangeColorspace"), iaa.Grayscale((0.01, 0.99), name="Grayscale"), iaa.KMeansColorQuantization((2, 16), name="KMeansColorQuantization"), iaa.UniformColorQuantization((2, 16), name="UniformColorQuantization"), iaa.UniformColorQuantizationToNBits((1, 7), name="UniformQuantizationToNBits"), iaa.Posterize((1, 7), name="Posterize") ] augmenters_contrast = [ iaa.GammaContrast(gamma=(0.5, 2.0), name="GammaContrast"), iaa.SigmoidContrast(gain=(5, 20), cutoff=(0.25, 0.75), name="SigmoidContrast"), iaa.LogContrast(gain=(0.7, 1.0), name="LogContrast"), iaa.LinearContrast((0.5, 1.5), name="LinearContrast"), iaa.AllChannelsCLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), name="AllChannelsCLAHE"), iaa.CLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), to_colorspace="HSV", name="CLAHE"), iaa.AllChannelsHistogramEqualization(name="AllChannelsHistogramEqualization"), iaa.HistogramEqualization(to_colorspace="HSV", name="HistogramEqualization"), ] augmenters_convolutional = [ iaa.Convolve(np.float32([[0, 0, 0], [0, 1, 0], [0, 0, 0]]), name="Convolve_3x3"), iaa.Sharpen(alpha=(0.01, 0.99), lightness=(0.5, 2), name="Sharpen"), iaa.Emboss(alpha=(0.01, 0.99), strength=(0, 2), name="Emboss"), iaa.EdgeDetect(alpha=(0.01, 0.99), name="EdgeDetect"), iaa.DirectedEdgeDetect(alpha=(0.01, 0.99), name="DirectedEdgeDetect") ] augmenters_edges = [ iaa.Canny(alpha=(0.01, 0.99), name="Canny") ] augmenters_flip = [ iaa.Fliplr(1.0, name="Fliplr"), iaa.Flipud(1.0, name="Flipud") ] augmenters_geometric = [ iaa.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), order=0, mode="constant", cval=(0, 255), name="Affine_order_0_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), name="Affine_order_1_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), order=3, mode="constant", cval=(0, 255), name="Affine_order_3_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), order=1, mode="edge", cval=(0, 255), name="Affine_order_1_edge"), iaa.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), backend="skimage", name="Affine_order_1_constant_skimage"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="constant", name="PiecewiseAffine_4x4_order_1_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=0, mode="constant", name="PiecewiseAffine_4x4_order_0_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="edge", name="PiecewiseAffine_4x4_order_1_edge"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8, order=1, mode="constant", name="PiecewiseAffine_8x8_order_1_constant"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=False, name="PerspectiveTransform"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=True, name="PerspectiveTransform_keep_size"), iaa.ElasticTransformation(alpha=(1, 10), sigma=(0.5, 1.5), order=0, mode="constant", cval=0, name="ElasticTransformation_order_0_constant"), iaa.ElasticTransformation(alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="constant", cval=0, name="ElasticTransformation_order_1_constant"), iaa.ElasticTransformation(alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="nearest", cval=0, name="ElasticTransformation_order_1_nearest"), iaa.ElasticTransformation(alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="reflect", cval=0, name="ElasticTransformation_order_1_reflect"), iaa.Rot90((1, 3), keep_size=False, name="Rot90"), iaa.Rot90((1, 3), keep_size=True, name="Rot90_keep_size"), iaa.WithPolarWarping(iaa.Identity(), name="WithPolarWarping"), iaa.Jigsaw(nb_rows=(3, 8), nb_cols=(3, 8), max_steps=1, name="Jigsaw") ] augmenters_pooling = [ iaa.AveragePooling(kernel_size=(1, 16), keep_size=False, name="AveragePooling"), iaa.AveragePooling(kernel_size=(1, 16), keep_size=True, name="AveragePooling_keep_size"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=False, name="MaxPooling"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=True, name="MaxPooling_keep_size"), iaa.MinPooling(kernel_size=(1, 16), keep_size=False, name="MinPooling"), iaa.MinPooling(kernel_size=(1, 16), keep_size=True, name="MinPooling_keep_size"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=False, name="MedianPooling"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=True, name="MedianPooling_keep_size") ] augmenters_imgcorruptlike = [ iaa.imgcorruptlike.GaussianNoise(severity=(1, 5), name="imgcorruptlike.GaussianNoise"), iaa.imgcorruptlike.ShotNoise(severity=(1, 5), name="imgcorruptlike.ShotNoise"), iaa.imgcorruptlike.ImpulseNoise(severity=(1, 5), name="imgcorruptlike.ImpulseNoise"), iaa.imgcorruptlike.SpeckleNoise(severity=(1, 5), name="imgcorruptlike.SpeckleNoise"), iaa.imgcorruptlike.GaussianBlur(severity=(1, 5), name="imgcorruptlike.GaussianBlur"), iaa.imgcorruptlike.GlassBlur(severity=(1, 5), name="imgcorruptlike.GlassBlur"), iaa.imgcorruptlike.DefocusBlur(severity=(1, 5), name="imgcorruptlike.DefocusBlur"), iaa.imgcorruptlike.MotionBlur(severity=(1, 5), name="imgcorruptlike.MotionBlur"), iaa.imgcorruptlike.ZoomBlur(severity=(1, 5), name="imgcorruptlike.ZoomBlur"), iaa.imgcorruptlike.Fog(severity=(1, 5), name="imgcorruptlike.Fog"), iaa.imgcorruptlike.Frost(severity=(1, 5), name="imgcorruptlike.Frost"), iaa.imgcorruptlike.Snow(severity=(1, 5), name="imgcorruptlike.Snow"), iaa.imgcorruptlike.Spatter(severity=(1, 5), name="imgcorruptlike.Spatter"), iaa.imgcorruptlike.Contrast(severity=(1, 5), name="imgcorruptlike.Contrast"), iaa.imgcorruptlike.Brightness(severity=(1, 5), name="imgcorruptlike.Brightness"), iaa.imgcorruptlike.Saturate(severity=(1, 5), name="imgcorruptlike.Saturate"), iaa.imgcorruptlike.JpegCompression(severity=(1, 5), name="imgcorruptlike.JpegCompression"), iaa.imgcorruptlike.Pixelate(severity=(1, 5), name="imgcorruptlike.Pixelate"), iaa.imgcorruptlike.ElasticTransform(severity=(1, 5), name="imgcorruptlike.ElasticTransform") ] augmenters_pillike = [ iaa.pillike.Solarize(p=1.0, threshold=(32, 128), name="pillike.Solarize"), iaa.pillike.Posterize((1, 7), name="pillike.Posterize"), iaa.pillike.Equalize(name="pillike.Equalize"), iaa.pillike.Autocontrast(name="pillike.Autocontrast"), iaa.pillike.EnhanceColor((0.0, 3.0), name="pillike.EnhanceColor"), iaa.pillike.EnhanceContrast((0.0, 3.0), name="pillike.EnhanceContrast"), iaa.pillike.EnhanceBrightness((0.0, 3.0), name="pillike.EnhanceBrightness"), iaa.pillike.EnhanceSharpness((0.0, 3.0), name="pillike.EnhanceSharpness"), iaa.pillike.FilterBlur(name="pillike.FilterBlur"), iaa.pillike.FilterSmooth(name="pillike.FilterSmooth"), iaa.pillike.FilterSmoothMore(name="pillike.FilterSmoothMore"), iaa.pillike.FilterEdgeEnhance(name="pillike.FilterEdgeEnhance"), iaa.pillike.FilterEdgeEnhanceMore(name="pillike.FilterEdgeEnhanceMore"), iaa.pillike.FilterFindEdges(name="pillike.FilterFindEdges"), iaa.pillike.FilterContour(name="pillike.FilterContour"), iaa.pillike.FilterEmboss(name="pillike.FilterEmboss"), iaa.pillike.FilterSharpen(name="pillike.FilterSharpen"), iaa.pillike.FilterDetail(name="pillike.FilterDetail"), iaa.pillike.Affine(scale=(0.9, 1.1), translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}, rotate=(-10, 10), shear=(-10, 10), fillcolor=(0, 255), name="pillike.Affine"), ] augmenters_segmentation = [ iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="cubic", name="Superpixels_max_size_64_cubic"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="linear", name="Superpixels_max_size_64_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=128, interpolation="linear", name="Superpixels_max_size_128_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=224, interpolation="linear", name="Superpixels_max_size_224_linear"), iaa.UniformVoronoi(n_points=(250, 1000), name="UniformVoronoi"), iaa.RegularGridVoronoi(n_rows=(16, 31), n_cols=(16, 31), name="RegularGridVoronoi"), iaa.RelativeRegularGridVoronoi(n_rows_frac=(0.07, 0.14), n_cols_frac=(0.07, 0.14), name="RelativeRegularGridVoronoi"), ] augmenters_size = [ iaa.Resize((0.8, 1.2), interpolation="nearest", name="Resize_nearest"), iaa.Resize((0.8, 1.2), interpolation="linear", name="Resize_linear"), iaa.Resize((0.8, 1.2), interpolation="cubic", name="Resize_cubic"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="CropAndPad"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="CropAndPad_edge"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), name="CropAndPad_keep_size"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="Pad"), iaa.Pad(percent=(0.05, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="Pad_edge"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), name="Pad_keep_size"), iaa.Crop(percent=(0.05, 0.2), keep_size=False, name="Crop"), iaa.Crop(percent=(0.05, 0.2), name="Crop_keep_size"), iaa.PadToFixedSize(width=width+10, height=height+10, pad_mode="constant", pad_cval=(0, 255), name="PadToFixedSize"), iaa.CropToFixedSize(width=width-10, height=height-10, name="CropToFixedSize"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height-10, width=width-10), interpolation="nearest", name="KeepSizeByResize_CropToFixedSize_nearest"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height-10, width=width-10), interpolation="linear", name="KeepSizeByResize_CropToFixedSize_linear"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height-10, width=width-10), interpolation="cubic", name="KeepSizeByResize_CropToFixedSize_cubic"), ] augmenters_weather = [ iaa.FastSnowyLandscape(lightness_threshold=(100, 255), lightness_multiplier=(1.0, 4.0), name="FastSnowyLandscape"), iaa.Clouds(name="Clouds"), iaa.Fog(name="Fog"), iaa.CloudLayer(intensity_mean=(196, 255), intensity_freq_exponent=(-2.5, -2.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.25, 0.75), alpha_size_px_max=(2, 8), alpha_freq_exponent=(-2.5, -2.0), sparsity=(0.8, 1.0), density_multiplier=(0.5, 1.0), name="CloudLayer"), iaa.Snowflakes(name="Snowflakes"), iaa.SnowflakesLayer(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2, 0.7), flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03), blur_sigma_fraction=(0.0001, 0.001), name="SnowflakesLayer"), iaa.Rain(name="Rain"), iaa.RainLayer(density=(0.03, 0.14), density_uniformity=(0.8, 1.0), drop_size=(0.01, 0.02), drop_size_uniformity=(0.2, 0.5), angle=(-15, 15), speed=(0.04, 0.20), blur_sigma_fraction=(0.001, 0.001), name="RainLayer") ] augmenters = ( augmenters_meta + augmenters_arithmetic + augmenters_artistic + augmenters_blend + augmenters_blur + augmenters_collections + augmenters_color + augmenters_contrast + augmenters_convolutional + augmenters_edges + augmenters_flip + augmenters_geometric + augmenters_pooling + augmenters_imgcorruptlike + augmenters_pillike + augmenters_segmentation + augmenters_size + augmenters_weather ) if only_augmenters is not None: augmenters_reduced = [] for augmenter in augmenters: if any([re.search(pattern, augmenter.name) for pattern in only_augmenters]): augmenters_reduced.append(augmenter) augmenters = augmenters_reduced return augmenters
def main(): try: config_dirs_file = sys.argv[1] # directories file config_file = sys.argv[2] # main params file except: print("Config file names not specified, setting them to default namess") config_dirs_file = "config_dirs.json" config_file = "config760.json" print(f'USING CONFIG FILES: config dirs:{config_dirs_file} main config:{config_file}') #print(type(feature_directory)) C = cs760.loadas_json('config760.json') print("Running with parameters:", C) Cdirs = cs760.loadas_json(config_dirs_file) print("Directories:", Cdirs) C['dirs'] = Cdirs video_directory = C['dirs']['indir'] feature_directory = C['dirs']['outdir'] print(f'Creating feature file Dir: {feature_directory}') os.makedirs(feature_directory, exist_ok=True) #if dir already exists will continue and WILL NOT delete existing files in that directory sometimes = lambda aug: iaa.Sometimes(C["augmentation_chance"][0], aug) sequential_list = [iaa.Sequential([sometimes(iaa.Fliplr(1.0))]), # horizontal flip iaa.Sequential([sometimes(iaa.Rotate(-5, 5))]), # rotate 5 degrees +/- iaa.Sequential([sometimes(iaa.CenterCropToAspectRatio(1.15))]), iaa.Sequential([sometimes(iaa.MultiplyBrightness((2.0, 2.0)))]), # increase brightness iaa.Sequential([sometimes(iaa.MultiplyHue((0.5, 1.5)))]), # change hue random iaa.Sequential([sometimes(iaa.RemoveSaturation(1.0))]), # effectively greyscale iaa.Sequential([sometimes(iaa.pillike.FilterContour())]), # edge detection iaa.Sequential([sometimes(iaa.AdditiveLaplaceNoise(scale=0.05*255, per_channel=True))]), # add colourful noise iaa.Sequential([sometimes(iaa.Invert(1))]) # invert colours ] print("Reading videos from " + video_directory) print("Outputting features to " + feature_directory) print("Loading pretrained CNN...") model = hub.KerasLayer(C["module_url"]) # can be used like any other kera layer including in other layers... print("Pretrained CNN Loaded OK") vids = cs760.list_files_pattern(video_directory, C["vid_type"]) print(f'Processing {len(vids)} videos...') for i, vid in enumerate(vids): print(f'{i} Processing: {vid}') vid_np = cs760.get_vid_frames(vid, video_directory, writejpgs=False, writenpy=False, returnnp=True) (framecount, frameheight, framewidth, channels) = vid_np.shape res_key = str(frameheight) + "-" + str(framewidth) #print(vid, vid_np.shape) outfile = os.path.splitext(vid)[0] print(f"Vid frames, h, w, c = {(framecount, frameheight, framewidth, channels)}") if C["crop_by_res"].get(res_key) is not None: vid_np_top = cs760.crop_image(vid_np, C["crop_by_res"][res_key]) print(f"Cropped by resolution to {C['crop_by_res'][res_key]}") else: vid_np_top = cs760.crop_image(vid_np, C["crop_top"]) print(f"Cropped by default to {C['crop_top']}") outfile_top = outfile + "__TOP.pkl" for n in range((len(sequential_list) + 1)): if n != 0: vid_aug = sequential_list[n - 1](images=vid_np_top) # augments frames if type(vid_aug) is list: vid_aug = np.asarray(vid_aug) batch = cs760.resize_batch(vid_aug, width=C["expect_img_size"], height=C["expect_img_size"], pad_type='L', inter=cv2.INTER_CUBIC, BGRtoRGB=False, simplenormalize=True, imagenetmeansubtract=False) temp_outfile = outfile_top[:-4] + C["augmentation_type"][n - 1] + ".pkl" features = extract(C, model, batch) cs760.saveas_pickle(features, os.path.join(feature_directory, temp_outfile)) else: batch = cs760.resize_batch(vid_np_top, width=C["expect_img_size"], height=C["expect_img_size"], pad_type='L', inter=cv2.INTER_CUBIC, BGRtoRGB=False, simplenormalize=True, imagenetmeansubtract=False) features = extract(C, model, batch) cs760.saveas_pickle(features, os.path.join(feature_directory, outfile_top)) print(f'Features output shape: {features.shape}') if C["crop_type"] == 'B': # only for boston vids vid_np_bot = cs760.crop_image(vid_np, C["crop_bottom"]) outfile_bot = outfile + "__BOT.pkl" batch = cs760.resize_batch(vid_np_bot, width=C["expect_img_size"], height=C["expect_img_size"], pad_type='L', inter=cv2.INTER_CUBIC, BGRtoRGB=False, simplenormalize=True, imagenetmeansubtract=False) features = extract(C, model, batch) cs760.saveas_pickle(features, os.path.join(feature_directory, outfile_bot)) print('Finished outputting features!!')
def generate_blending(): image, segmap = load_cityscapes_data() # color car lights ia.seed(10) # 2 = blue lights, 8 = pink, 10 = green lights image_aug, _segmap_aug = iaa.BlendAlphaSegMapClassIds( 1, foreground=iaa.BlendAlphaSomeColors( iaa.AddToHueAndSaturation(value_hue=(-200, 200), value_saturation=(-100, 100))))( image=image, segmentation_maps=segmap) _save("cityscapes5-car-lights-changed.jpg", image_aug, size=0.3) # color train ia.seed(37) image_aug, _segmap_aug = iaa.BlendAlphaSegMapClassIds( 2, foreground=iaa.AddToHueAndSaturation(value_hue=(-200, 200), value_saturation=(-100, 100)))( image=image, segmentation_maps=segmap) _save("cityscapes5-train-color.jpg", image_aug, size=0.3) # emboss street image_aug, _segmap_aug = iaa.BlendAlphaSegMapClassIds( 4, foreground=iaa.Emboss(1.0, strength=1.0))(image=image, segmentation_maps=segmap) _save("cityscapes5-street-embossed.jpg", image_aug, size=0.3) # replace street with gaussian noise ia.seed(3) image_aug, _segmap_aug = iaa.BlendAlphaSegMapClassIds( 4, foreground=iaa.Sequential([ iaa.Multiply(0.0), iaa.AdditiveGaussianNoise(loc=128, scale=40, per_channel=True) ]), )(image=image, segmentation_maps=segmap) _save("cityscapes5-street-gaussian-noise.jpg", image_aug, size=0.3) # regular grid dropout ia.seed(1) image_aug = iaa.BlendAlphaRegularGrid( nb_rows=(8, 12), nb_cols=(8, 12), foreground=iaa.Multiply(0.0))(image=image) _save("cityscapes5-regular-grid-dropout.jpg", image_aug, size=0.3) # checkerboard dropout ia.seed(1) image_aug = iaa.BlendAlphaCheckerboard( nb_rows=(8, 12), nb_cols=(8, 12), foreground=iaa.Multiply(0.0))(image=image) _save("cityscapes5-checkerboard-dropout.jpg", image_aug, size=0.3) # somecolors + removesaturation ia.seed(1) image_gogh = imageio.imread( os.path.join(INPUT_IMAGES_DIR, "1280px-Vincent_Van_Gogh_-_Wheatfield_with_Crows.jpg")) image_gogh = iaa.Resize({ "width": 256, "height": "keep-aspect-ratio" })(image=image_gogh) images_aug = ([image_gogh] + iaa.BlendAlphaSomeColors( iaa.RemoveSaturation(1.0))(images=[image_gogh] * (2 * 4 - 1))) _save("blendalphasomecolors_removesaturation.jpg", ia.draw_grid(images_aug, cols=4, rows=2))
transformed_image = transform(image=image) elif augmentation == 'multiply_saturation': transform = iaa.MultiplySaturation((0.5, 1.5)) transformed_image = transform(image=image) elif augmentation == 'addto_saturation': transform = iaa.AddToSaturation((-100, 100)) transformed_image = transform(image=image) elif augmentation == 'saturate': transform = iaa.imgcorruptlike.Saturate(severity=5) transformed_image = transform(image=image) elif augmentation == 'remove_saturation': transform = iaa.RemoveSaturation() transformed_image = transform(image=image) elif augmentation == 'multiply_hue_and_saturation': transform = iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True) transformed_image = transform(image=image) elif augmentation == 'brightness_contrast': transform = RandomBrightnessContrast(always_apply=True, brightness_limit=0.5) transformed_image = transform(image=image)['image'] elif augmentation == 'brightness': transform = iaa.imgcorruptlike.Brightness(severity=2) transformed_image = transform(image=image)