Пример #1
0
    # cable dete
    detect_with = 0
    detect_without = 0
    not_detect_with = 0
    not_detect_without = 0
    detector_samples = 0

    for j in range(0, len(ordered_files)):

        cont_samples += 1
        print images_path + ordered_files[j]
        src = cv2.imread(images_path + ordered_files[j])
        normalized = cv2.imread(normalized_path + ordered_files[j])
        mat = src.copy()

        gradient, without_close, test = ipp.preprocess(mat)
        img_bounded, all_features, key, rgb_bounded, roi, flood, cols_intermedi_img, without_cable = detector_features.extractor(
            mat, without_close, gradient, cont_samples, normalized)

        # Segregation Mode
        if segregation:

            # Used to show images provided by the detector_features.extractor method

            # cv2.namedWindow('Depth', cv2.WINDOW_NORMAL)

            # When there is nothing to detect the method returns a roi equal None

            # if roi == None:
            # img_bounded = cv2.cvtColor(img_bounded, cv2.COLOR_BGR2GRAY)
            # rgb_bounded = img_bounded
Пример #2
0
    clamp_extent = []
    clamp_perimeter = []
    clamp_eccentricity = []
    clamp_label = []

    cont_samples = 0

    for j in range(0, len(clamp_ordered_files)):

        cont_samples += 1

        print clamp_folder + clamp_ordered_files[j]
        src = cv2.imread(clamp_folder + clamp_ordered_files[j])
        mat = src.copy()

        gradient = ipp.preprocess(mat)
        img_bounded, all_features, key = features.extractor(
            gradient, mat, cont_samples)

        if key == 27:
            cv2.destroyAllWindows()
            break

        clamp_sample.append(cont_samples)
        clamp_aspect_ratio.append(all_features[0])
        clamp_contour_area.append(all_features[1])
        clamp_solidity.append(all_features[2])
        clamp_extent.append(all_features[3])
        clamp_perimeter.append(all_features[4])
        clamp_eccentricity.append(all_features[5])
Пример #3
0
    clamp_extent = []
    clamp_perimeter = []
    clamp_eccentricity = []
    clamp_label = []

    cont_samples = 0

    for j in range(0, len(clamp_ordered_files)):

        cont_samples += 1

        print clamp_folder + clamp_ordered_files[j]
        src = cv2.imread(clamp_folder + clamp_ordered_files[j])
        mat = src.copy()

        gradient = ipp.preprocess(mat)
        img_bounded, all_features, key = features.extractor(
            gradient, mat, cont_samples)

        if key == 27:
            cv2.destroyAllWindows()
            break

        clamp_sample.append(cont_samples)
        clamp_aspect_ratio.append(all_features[0])
        clamp_contour_area.append(all_features[1])
        clamp_solidity.append(all_features[2])
        clamp_extent.append(all_features[3])
        clamp_perimeter.append(all_features[4])
        clamp_eccentricity.append(all_features[5])