from keras.models import Sequential, load_model from keras.layers import Dense, Convolution2D, MaxPooling2D, UpSampling2D from sklearn.metrics import mean_squared_error sys.path.append(modelsPath) from importStuffLoadData import loadData # Save time timeStr = time.strftime('%Y%m%d_%H%M%S') nbClasses = 1 #date = '2016_08_19' date = '2016_11_03' [origImRows, origImCols, (trainImages, trainResults), (valImages, valResults), (testImages, testResults), fullTestImages] = loadData(nbClasses, date) valData = (valImages, valResults) os.chdir(basePath) # TODO: KL transform # TODO: Covariance Equalization # imresize imRows = 64 imCols = 64 newTrainImages = np.zeros((trainImages.shape[0], imRows, imCols, 1)) for i in range(trainImages.shape[0]): newTrainImages[i] = imresize(trainImages[i].reshape(origImRows, origImCols), (imRows, imCols)).reshape(imRows, imCols, 1)/255.0
from importStuffLoadData import loadData from keras.models import Sequential, load_model from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten # Save time timeStr = time.strftime('%Y%m%d_%H%M%S') nbClasses = 1 #date = '2016_08_19' date = '2016_11_03' [ origImRows, origImCols, origImChannels, (trainImages, trainResults), (valImages, valResults), (testImages, testResults), fullTestImages ] = loadData(nbClasses, date) valData = (valImages, valResults) os.chdir(basePath) ''' [imRows, imCols, (trainImages, trainResults), trainImagesMean, valData, (testImages, testResults), fulltestImages] = loadData(nbClasses, date) # Find trainnImagesMean trainImagesMean = trainImages.mean(axis=0) # Save trainImagesMean trainImagesMeanFileName = basePath+'trainImagesMean_'+timeStr+'.npy' np.save(trainImagesMeanFileName, trainImagesMean) print "saved " + trainImagesMeanFileName