Пример #1
0
def extract_features(rows):
    users_list = list()
    users = len(rows)
    rows_amount = 0

    logline(
        'There are', users, 'users and', len(rows),
        'rows matching your filter type',
        'no computer users or anonymous users'
        if io.get('users_only') else 'no anonymous users')

    rows_max = get_dict_inner_length(rows)
    logline('Setting timer for', rows_max, 'rows')
    timer = Timer(rows_max)

    try:
        for name, group in rows.items():
            completed_result, group_len = strip_group_length(
                gen_features_for_user((name, group)))

            timer.add_to_current(group_len)
            rows_amount += group_len

            if completed_result is not None:
                users_list.append(completed_result)

                if rows_amount > next_report == 0 or REPORT_EVERY_USER:
                    next_report = next_report + REPORT_SIZE

                    logline('At row ',
                            str(rows_amount),
                            '/~',
                            str(row_amount),
                            ' - ETA is: ' + timer.get_eta(),
                            spaces_between=False)
                    logline('At user ',
                            len(users_list),
                            '/~',
                            max_users,
                            spaces_between=False)

            if len(users_list) >= max_users:
                break
    except KeyboardInterrupt:
        logline('User cancelled execution, wrapping up')
        debug('Cancelled early at', len(users_list), 'instead of', users)
        debug('You skipped a total of', users - len(users_list), 'users, or',
              100 - ((len(users_list) / users) * 100), '%')
    except Exception:
        error('An error occurred during execution', traceback.format_exc())
        debug('Salvaging all remaining users')
    finally:
        debug('Runtime is', timer.report_total_time())

        logline("Did a total of", len(users_list), "users")
        logline('Done gathering data')
        logline('Closing file...')
        output_data(users_list)
Пример #2
0
def do_detection(
    session: Session,
    users_list: List[Dict[str, Union[str, Dict[str, List[List[float]]]]]]
) -> Dict[str, List[Dict[str, int]]]:
    logline('Calculating total dataset size')
    total_samples = 0
    for user in users_list:
        total_samples += len(user["datasets"]["training"])

    timer = Timer(total_samples)

    logline("Starting anomaly detection")

    all_anomalies = dict()
    tested_users = 0
    for user in users_list:

        logline("")
        percentage = round((tested_users * 100) / len(users_list))
        logline("Checking user ",
                tested_users,
                "/",
                len(users_list),
                " (",
                percentage,
                "%)",
                spaces_between=False)
        logline("ETA is " + timer.get_eta())

        current_user = Dataset(user)

        try:
            anomalies = find_anomalies(session, current_user)
            if len(anomalies) > 0:
                all_anomalies[current_user.user_name] = anomalies
            tested_users += 1
            timer.add_to_current(len(current_user.datasets.training))
        except KeyboardInterrupt:
            # Skip rest of users, report early
            logline("\n\nSkipping rest of the users")
            break

    debug('Runtime is', timer.report_total_time())
    return all_anomalies
Пример #3
0
def gen_features(f: pd.DataFrame, row_amount: int):
    users_list = list()

    logline('Calculating amount of groups...')
    users = len(f)
    logline(
        'There are', users, 'users and', row_amount,
        'rows matching your filter type',
        'no computer users or anonymous users'
        if io.get('users_only') else 'no anonymous users')
    rows = 0

    max_users = users
    if not DO_ROWS_PERCENTAGE:
        max_users = int(math.ceil(users * 0.01 * io.get('dataset_percentage')))
    logline('Max amount of users is', max_users)

    logline('Setting timer for',
            int(math.ceil(row_amount * 0.01 * io.get('dataset_percentage'))),
            'rows')
    timer = Timer(
        int(math.ceil(row_amount * 0.01 * io.get('dataset_percentage'))))

    logline('Creating iterator')
    dataset_iterator = DFIterator(f)

    next_report = REPORT_SIZE

    if not SKIP_MAIN:
        try:
            # Create groups of approx 1000 users big
            if io.get('cpus') == 1:
                logline('Only using a single CPU')
                logline('Starting feature generation')
                for name, group in f:
                    completed_result, group_len = strip_group_length(
                        gen_features_for_user((name, group)))

                    timer.add_to_current(group_len)
                    rows += group_len

                    if completed_result is not None:
                        users_list.append(completed_result)

                        if rows > next_report == 0 or REPORT_EVERY_USER:
                            next_report = next_report + REPORT_SIZE

                            logline('At row ',
                                    str(rows),
                                    '/~',
                                    str(row_amount),
                                    ' - ETA is: ' + timer.get_eta(),
                                    spaces_between=False)
                            logline('At user ',
                                    len(users_list),
                                    '/~',
                                    max_users,
                                    spaces_between=False)

                    if len(users_list) >= max_users:
                        break

            else:
                logline('Using', io.get('cpus'), 'cpus')
                for i in range(
                        round(math.ceil(max_users / PROCESSING_GROUP_SIZE))):
                    dataset_iterator.set_max((i + 1) * PROCESSING_GROUP_SIZE)
                    if i == 0:
                        logline('Starting feature generation')

                    with multiprocessing.Pool(io.get('cpus')) as p:
                        for completed_result in p.imap_unordered(
                                gen_features_for_user,
                                dataset_iterator,
                                chunksize=100):

                            completed_result, group_len = strip_group_length(
                                completed_result)
                            timer.add_to_current(group_len)
                            rows += group_len

                            if completed_result is not None:
                                users_list.append(completed_result)

                                if rows > next_report or REPORT_EVERY_USER:
                                    next_report = next_report + REPORT_SIZE
                                    logline('At row ',
                                            str(rows),
                                            '/~',
                                            str(row_amount),
                                            ' - ETA is: ' + timer.get_eta(),
                                            spaces_between=False)
                                    logline('At user',
                                            len(users_list),
                                            '/~',
                                            max_users,
                                            spaces_between=False)
        except KeyboardInterrupt:
            logline('User cancelled execution, wrapping up')
            debug('Cancelled early at', len(users_list), 'instead of', users)
            debug('You skipped a total of', users - len(users_list),
                  'users, or', 100 - ((len(users_list) / users) * 100), '%')
        except Exception:
            error('An error occurred during execution', traceback.format_exc())
            debug('Salvaging all remaining users')
        finally:
            debug('Runtime is', timer.report_total_time())

            logline("Did a total of", len(users_list), "users")
            logline('Done gathering data')
            logline('Closing file...')
            output_data(users_list)
    else:
        debug('SKIPPING MAIN, DO NOT ENABLE IN PRODUCTION')
        logline('Closing file')
        output_data([])
def main():
    if not io.run:
        return

    state_file = io.get('state_file')
    input_file = io.get('input_file')
    output_file = io.get('output_file')
    dataset_file = io.get('dataset_file')

    logline('Loading dataset file...')
    f = pd.read_hdf(dataset_file,
                    get_dataset_name(),
                    start=0,
                    stop=calc_rows_amount())
    logline('Filtering users')
    f = filter_users(f)
    logline('Grouping users')
    f = group_df(f)

    if state_file is not None:
        initial_state = get_state(state_file)
        logline('Waiting for state to reach different value, currently at ' +
                str(initial_state) + '...')
        while get_state(state_file) == initial_state:
            time.sleep(60)

        logline('State file has switched to ' + str(get_state(state_file)) +
                ', continuing execution')

    logline('Loading anomalies')
    anomalies = read_anomalies(input_file)

    anomaly_rows_list = dict()

    users = len(f)
    max_users = users
    if DO_ROWS_PERCENTAGE:
        max_users = math.ceil(users * 0.01 * io.get('dataset_percentage'))

    timer = Timer(math.ceil(len(f) * 0.01 * io.get('dataset_percentage')))

    for name, group in f:
        user_name = group.iloc[0].get('source_user').split('@')[0]

        anomaly_collection = anomalies.get(user_name)
        if anomaly_collection is not None:
            # Print those rows

            user_anomalies = list()
            for anomaly in anomaly_collection:
                anomaly_dict = {
                    "start":
                    anomaly["start"],
                    "end":
                    anomaly["end"],
                    "lines":
                    listify_df(group.iloc[anomaly["start"]:anomaly["end"]]),
                    "final_features":
                    translate_feature_arr(anomaly["final_row_features"]),
                    "predicted":
                    anomaly["predicted"],
                    "actual":
                    anomaly["actual"],
                    "loss":
                    anomaly["loss"]
                }
                user_anomalies.append(anomaly_dict)

            anomaly_rows_list[user_name] = user_anomalies

            timer.add_to_current(1)

        if timer.current % REPORT_SIZE == 0:
            logline('ETA is ' + timer.get_eta())

        if timer.current >= max_users:
            break

    debug('Runtime is', timer.report_total_time())
    logline('Generating concatenated results')
    if output_file == 'stdout':
        logline("Outputting results to stdout\n\n\n")
        logline('Final value is', anomaly_rows_list)
        logline(json.dumps(anomaly_rows_list))
    else:
        logline('Outputting results to', output_file)
        with open(output_file, 'w') as out_file:
            out_file.write(json.dumps(anomaly_rows_list))
            logline('Output results to', output_file)

    if REMOVE_INPUT_FILE:
        os.remove(input_file)
        logline('Removed encoded file')
    else:
        logline('Not Removing encoded file')

    logline('Done, closing files and stuff')