def make_efficient_example(ex, further_expansion_factor=1, further_scale_up=1, dir_suffix=''): """Make example by storing the image in a cropped and resized version for efficient loading""" # Determine which area we will need from the image # This is a bit larger than the tight crop because of the geometric augmentations max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 * further_scale_up scale_down_factor = 1 / 0.85 shift_factor = 1.1 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s, c = np.sin(max_rotate), np.cos(max_rotate) w, h = ex.bbox[2:] rot_bbox_side = max(c * w + s * h, c * h + s * w) rot_bbox = boxlib.box_around(box_center, rot_bbox_side) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = (padding_factor * shift_factor * scale_down_factor * further_expansion_factor) expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, np.array([0, 0, 1000, 1000])) new_camera = copy.deepcopy(ex.camera) new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() new_im_relpath = ex.image_path.replace('h36m', f'h36m_downscaled{dir_suffix}') new_im_path = f'{paths.DATA_ROOT}/{new_im_relpath}' if not (util.is_file_newer(new_im_path, "2019-11-14T23:33:14") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(ex.image_path) dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points( ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) ex = ps3d.Pose3DExample(new_im_relpath, ex.world_coords, new_bbox, new_camera, activity_name=ex.activity_name) return ex
def make_efficient_example(ex, root_muco, i_person): image_relpath = ex.image_path max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.2 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s = np.sin(max_rotate) c = np.cos(max_rotate) rot_bbox_size = (np.array([[c, s], [s, c]]) @ ex.bbox[2:, np.newaxis])[:, 0] side = np.max(rot_bbox_size) rot_bbox_size = np.array([side, side]) rot_bbox = boxlib.box_around(box_center, rot_bbox_size) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = padding_factor * shift_factor * scale_down_factor expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, boxlib.full_box([2048, 2048])) new_camera = ex.camera.copy() new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_path = f'{root_muco}_downscaled/{image_relpath[:-4]}_{i_person:01d}.jpg' if not (util.is_file_newer(new_im_path, "2020-02-15T23:28:26")): im = improc.imread_jpeg(f'{root_muco}/{image_relpath}') new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape, antialias_factor=4) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im, quality=95) new_bbox_topleft = cameralib.reproject_image_points(ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) if ex.mask is None: noext, ext = os.path.splitext(image_relpath[:-4]) noext = noext.replace('unaugmented_set_001/', '') mask = improc.decode_mask(util.load_pickle(f'{root_muco}/masks/{noext}.pkl')) else: mask = ex.mask if mask is False: new_mask_encoded = None else: new_mask = cameralib.reproject_image(mask, ex.camera, new_camera, dst_shape) new_mask_encoded = improc.encode_mask(new_mask) return p3ds.Pose3DExample( os.path.relpath(new_im_path, paths.DATA_ROOT), ex.world_coords.astype(np.float32), new_bbox.astype(np.float32), new_camera, mask=new_mask_encoded, univ_coords=ex.univ_coords.astype(np.float32))
def make_efficient_example(ex, rect_id): """Make example by storing the image in a cropped and resized version for efficient loading""" # Determine which area we will need # For rotation, usual padding around box, scale (shrink) augmentation and shifting padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.1 max_rotate = np.pi / 6 rot_factor = np.sin(max_rotate) + np.cos(max_rotate) base_dst_side = 256 scale_factor = min(base_dst_side / ex.bbox[3] * scale_up_factor, 1) hopeful_factor = 0.9 expansion_factor = ( rot_factor * padding_factor * shift_factor * scale_down_factor * hopeful_factor) expanded_bbox = boxlib.expand(boxlib.expand_to_square(ex.bbox), expansion_factor) imsize = improc.image_extents(ex.image_path) full_box = np.array([0, 0, imsize[0], imsize[1]]) expanded_bbox = boxlib.intersect(expanded_bbox, full_box) old_camera = cameralib.Camera.create2D() new_camera = old_camera.copy() new_camera.shift_image(-expanded_bbox[:2]) new_camera.scale_output(scale_factor) dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_path = ex.image_path.replace('mpii', f'mpii_downscaled') without_ext, ext = os.path.splitext(new_im_path) new_im_path = f'{without_ext}_{rect_id:02d}{ext}' if not (util.is_file_newer(new_im_path, "2019-11-12T17:54:06") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(ex.image_path) new_im = cameralib.reproject_image(im, old_camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points(ex.bbox[:2], old_camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) new_coords = cameralib.reproject_image_points(ex.coords, old_camera, new_camera) ex = Pose2DExample(os.path.relpath(new_im_path, paths.DATA_ROOT), new_coords, bbox=new_bbox) return ex
def make_efficient_example(ex, new_image_path, further_expansion_factor=1, image_adjustments_3dhp=False, min_time=None): """Make example by storing the image in a cropped and resized version for efficient loading""" is3d = hasattr(ex, 'world_coords') w, h = (improc.image_extents(util.ensure_absolute_path(ex.image_path)) if isinstance(ex.image_path, str) else (ex.image_path.shape[1], ex.image_path.shape[0])) full_box = boxlib.full_box(imsize=[w, h]) if is3d: old_camera = ex.camera new_camera = ex.camera.copy() new_camera.turn_towards(target_image_point=boxlib.center(ex.bbox)) new_camera.undistort() else: old_camera = cameralib.Camera.create2D() new_camera = old_camera.copy() reprojected_box = reproject_box(ex.bbox, old_camera, new_camera, method='side_midpoints') reprojected_full_box = reproject_box(full_box, old_camera, new_camera, method='corners') expanded_bbox = (get_expanded_crop_box( reprojected_box, reprojected_full_box, further_expansion_factor) if further_expansion_factor > 0 else reprojected_box) scale_factor = min(1.2, 256 / np.max(reprojected_box[2:]) * 1.5) new_camera.shift_image(-expanded_bbox[:2]) new_camera.scale_output(scale_factor) reprojected_box = reproject_box(ex.bbox, old_camera, new_camera, method='side_midpoints') dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_image_abspath = util.ensure_absolute_path(new_image_path) if not (util.is_file_newer(new_image_abspath, min_time) and improc.is_image_readable(new_image_abspath)): im = improc.imread_jpeg(ex.image_path) if isinstance( ex.image_path, str) else ex.image_path #host_im, cuda_im = get_memory(im.shape) im = np.power((im.astype(np.float32) / 255), 2.2) #cuda_im.upload(host_im) new_im = cameralib.reproject_image(im, old_camera, new_camera, dst_shape, antialias_factor=2, interp=cv2.INTER_CUBIC) new_im = np.clip(new_im, 0, 1) if image_adjustments_3dhp: # enhance the 3dhp images to reduce the green tint and increase brightness new_im = (new_im**(1 / 2.2 * 0.67) * 255).astype(np.uint8) new_im = improc.white_balance(new_im, 110, 145) else: new_im = (new_im**(1 / 2.2) * 255).astype(np.uint8) util.ensure_path_exists(new_image_abspath) imageio.imwrite(new_image_abspath, new_im, quality=95) assert improc.is_image_readable(new_image_abspath) new_ex = copy.deepcopy(ex) new_ex.bbox = reprojected_box new_ex.image_path = new_image_path if is3d: new_ex.camera = new_camera else: new_ex.coords = cameralib.reproject_image_points( new_ex.coords, old_camera, new_camera) if hasattr(ex, 'mask') and ex.mask is not None: if isinstance(ex.mask, str): mask = improc.imread_jpeg(util.ensure_absolute_path(ex.mask)) host_mask, cuda_mask = get_memory(mask.shape) np.divide(mask.astype(np.float32), 255, out=host_mask) cuda_mask.upload(host_mask) mask_reproj = cameralib.reproject_image( cuda_mask, ex.camera, new_camera, dst_shape, antialias_factor=2).download() mask_reproj = 255 * (mask_reproj[..., 0] > 32 / 255).astype( np.uint8) new_ex.mask = get_connected_component_with_highest_iou( mask_reproj, reprojected_box) else: new_ex.mask = ex.mask return new_ex
def make_efficient_example(ex): image_relpath = ex.image_path max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.2 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s, c = np.sin(max_rotate), np.cos(max_rotate) w, h = ex.bbox[2:] rot_bbox_side = max(c * w + s * h, c * h + s * w) rot_bbox = boxlib.box_around(box_center, rot_bbox_side) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = padding_factor * shift_factor * scale_down_factor expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, np.array([0, 0, 2048, 2048])) new_camera = ex.camera.copy() new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_relpath = ex.image_path.replace('3dhp', f'3dhp_downscaled') new_im_path = os.path.join(paths.DATA_ROOT, new_im_relpath) if not (util.is_file_newer(new_im_path, "2019-11-14T23:32:07") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(f'{paths.DATA_ROOT}/{image_relpath}') new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points( ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) mask_rle_relpath = new_im_path.replace('Images', 'FGmaskImages').replace( '.jpg', '.pkl') mask_rle_path = os.path.join(paths.DATA_ROOT, mask_rle_relpath) if util.is_file_newer(mask_rle_path, "2020-03-11T20:46:46"): mask_runlength = util.load_pickle(mask_rle_path) else: mask_relpath = ex.image_path.replace('Images', 'FGmaskImages').replace( '.jpg', '.png') mask = imageio.imread(os.path.join(paths.DATA_ROOT, mask_relpath)) mask_reproj = cameralib.reproject_image(mask, ex.camera, new_camera, dst_shape) mask_runlength = get_mask_with_highest_iou(mask_reproj, new_bbox) util.dump_pickle(mask_runlength, mask_rle_path) return p3ds.Pose3DExample(new_im_relpath, ex.world_coords, new_bbox, new_camera, mask=mask_runlength, univ_coords=ex.univ_coords)