def test_site_list_with_unique_id_coordinate_missing_name(self):
     """Test an error is raised if a unique_id_coordinate is provided but
     no name for the resulting coordinate."""
     data = np.array([1.6, 1.3, 1.4, 1.1])
     msg = "A unique_site_id_key must be provided"
     with self.assertRaisesRegex(ValueError, msg):
         build_spotdata_cube(
             data,
             *self.args,
             unique_site_id=self.unique_site_id,
         )
    def test_renaming_to_set_standard_name(self):
        """Test that CF standard names are set as such in the returned cube,
        whilst non-standard names remain as the long_name."""
        standard_name_cube = build_spotdata_cube(
            1.6, 'air_temperature', 'degC', 10., 59.5, 1.3, '03854')
        non_standard_name_cube = build_spotdata_cube(
            1.6, 'toast_temperature', 'degC', 10., 59.5, 1.3, '03854')

        self.assertEqual(standard_name_cube.standard_name, 'air_temperature')
        self.assertEqual(standard_name_cube.long_name, None)
        self.assertEqual(non_standard_name_cube.standard_name, None)
        self.assertEqual(non_standard_name_cube.long_name, 'toast_temperature')
    def test_3d_spot_cube_with_unequal_length_coordinates(self):
        """Test error is raised if coordinates lengths do not match data
        dimensions."""

        data = np.ones((4, 2, 2), dtype=np.float32)

        msg = "Unequal lengths"
        with self.assertRaisesRegex(ValueError, msg):
            build_spotdata_cube(
                data, 'air_temperature', 'degC', self.altitude, self.latitude,
                self.longitude, self.wmo_id,
                neighbour_methods=self.neighbour_methods,
                grid_attributes=self.grid_attributes)
    def test_3d_spot_cube_with_unequal_length_coordinates(self):
        """Test error is raised if coordinates lengths do not match data
        dimensions."""

        data = np.ones((4, 2, 2), dtype=np.float32)

        msg = "Unequal lengths"
        with self.assertRaisesRegex(ValueError, msg):
            build_spotdata_cube(
                data,
                *self.args,
                neighbour_methods=self.neighbour_methods,
                grid_attributes=self.grid_attributes,
            )
Пример #5
0
    def build_diagnostic_cube(neighbour_cube, diagnostic_cube, spot_values):
        """
        Builds a spot data cube containing the extracted diagnostic values.

        Args:
            neighbour_cube (iris.cube.Cube):
                This cube is needed as a source for information about the spot
                sites which needs to be included in the spot diagnostic cube.
            diagnostic_cube (iris.cube.Cube):
                The cube is needed to provide the name and units of the
                diagnostic that is being processed.
            spot_values (numpy.ndarray):
                An array containing the diagnostic values extracted for the
                required spot sites.
        Returns:
            iris.cube.Cube:
                A spot data cube containing the extracted diagnostic data.
        """

        neighbour_cube = build_spotdata_cube(
            spot_values,
            diagnostic_cube.name(),
            diagnostic_cube.units,
            neighbour_cube.coord("altitude").points,
            neighbour_cube.coord(axis="y").points,
            neighbour_cube.coord(axis="x").points,
            neighbour_cube.coord("wmo_id").points,
        )
        return neighbour_cube
Пример #6
0
    def setUp(self):
        """Set-up truth cubes."""
        super().setUp()
        # Create a cube of the format expected based on the input dataframe.
        cubes = iris.cube.CubeList([])

        for time, data_slice in zip([self.time1, self.time2, self.time3],
                                    _chunker(self.truth_data, 3)):
            time_coord = iris.coords.DimCoord(
                np.array(time.timestamp(), dtype=TIME_COORDS["time"].dtype),
                "time",
                bounds=[
                    np.array(t.timestamp(), dtype=TIME_COORDS["time"].dtype)
                    for t in [time - self.period, time]
                ],
                units=TIME_COORDS["time"].units,
            )
            cubes.append(
                build_spotdata_cube(
                    data_slice.astype(np.float32),
                    self.cf_name,
                    self.units,
                    np.array(self.altitudes, dtype=np.float32),
                    np.array(self.latitudes, dtype=np.float32),
                    np.array(self.longitudes, dtype=np.float32),
                    wmo_id=self.wmo_ids,
                    scalar_coords=[time_coord, self.height_coord],
                ))
        self.expected_period_truth = cubes.merge_cube()
        self.expected_instantaneous_truth = self.expected_period_truth.copy()
        self.expected_instantaneous_truth.coord("time").bounds = None
Пример #7
0
def spot_fixture():
    """Spot temperature cube"""
    alts = np.array([15, 82, 0, 4, 15, 269], dtype=np.float32)
    lats = np.array([60.75, 60.13, 58.95, 57.37, 58.22, 57.72],
                    dtype=np.float32)
    lons = np.array([-0.85, -1.18, -2.9, -7.40, -6.32, -4.90],
                    dtype=np.float32)
    wmo_ids = np.array(["3002", "3005", "3017", "3023", "3026", "3031"])
    spot_cube = build_spotdata_cube(
        np.arange(6).astype(np.float32),
        "air_temperature",
        "degC",
        alts,
        lats,
        lons,
        wmo_ids,
    )
    spot_cube.add_aux_coord(
        iris.coords.AuxCoord([50], long_name="percentile", units="%"))
    spot_cube.attributes = {
        "source": "IMPROVER",
        "institution": "Met Office",
        "title": "IMPROVER Post-Processed Multi-Model Blend UK Spot Values",
        "mosg__model_configuration": "uk_det uk_ens",
    }
    (time, _), (blend_time, _), (_, _) = construct_scalar_time_coords(
        time=datetime(2021, 2, 3, 14),
        time_bounds=None,
        frt=datetime(2021, 2, 3, 10))
    blend_time.rename("blend_time")
    spot_cube.add_aux_coord(time)
    spot_cube.add_aux_coord(blend_time)
    return spot_cube
    def test_scalar_coords(self):
        """Test additional scalar coordinates"""
        time_origin = "hours since 1970-01-01 00:00:00"
        calendar = "gregorian"
        tunit = Unit(time_origin, calendar)
        time_coord = AuxCoord(419811., "time", units=tunit)
        frt_coord = AuxCoord(419805., "forecast_reference_time", units=tunit)
        fp_coord = AuxCoord(6, "forecast_period", units="hours")

        data = np.ones((4, 2), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            'air_temperature',
            'degC',
            self.altitude,
            self.latitude,
            self.longitude,
            self.wmo_id,
            scalar_coords=[time_coord, frt_coord, fp_coord],
            neighbour_methods=self.neighbour_methods)

        self.assertAlmostEqual(result.coord('time').points[0], 419811.)
        self.assertAlmostEqual(
            result.coord('forecast_reference_time').points[0], 419805.)
        self.assertEqual(result.coord('forecast_period').points[0], 6)
Пример #9
0
    def setUp(self):
        """Set up cubes for use in testing."""

        data = np.ones(9).reshape(3, 3).astype(np.float32)
        self.reference_cube = set_up_variable_cube(data,
                                                   spatial_grid="equalarea")
        self.cube1 = self.reference_cube.copy()
        self.cube2 = self.reference_cube.copy()
        self.unmatched_cube = set_up_variable_cube(data, spatial_grid="latlon")

        self.diagnostic_cube_hash = create_coordinate_hash(self.reference_cube)

        neighbours = np.array([[[0.0], [0.0], [0.0]]])
        altitudes = np.array([0])
        latitudes = np.array([0])
        longitudes = np.array([0])
        wmo_ids = np.array([0])
        grid_attributes = ["x_index", "y_index", "vertical_displacement"]
        neighbour_methods = ["nearest"]
        self.neighbour_cube = build_spotdata_cube(
            neighbours,
            "grid_neighbours",
            1,
            altitudes,
            latitudes,
            longitudes,
            wmo_ids,
            grid_attributes=grid_attributes,
            neighbour_methods=neighbour_methods,
        )
        self.neighbour_cube.attributes[
            "model_grid_hash"] = self.diagnostic_cube_hash
Пример #10
0
    def test_scalar_coords(self):
        """Test additional scalar coordinates"""
        [(time_coord, _), (frt_coord, _), (fp_coord, _)
         ] = construct_scalar_time_coords(datetime(2015, 11, 23, 4, 30), None,
                                          datetime(2015, 11, 22, 22, 30))

        data = np.ones((2, 4), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            "air_temperature",
            "degC",
            self.altitude,
            self.latitude,
            self.longitude,
            self.wmo_id,
            scalar_coords=[time_coord, frt_coord, fp_coord],
            neighbour_methods=self.neighbour_methods,
        )

        # pylint: disable=unsubscriptable-object
        self.assertEqual(result.coord("time").points[0], time_coord.points[0])
        self.assertEqual(
            result.coord("forecast_reference_time").points[0],
            frt_coord.points[0])
        self.assertEqual(
            result.coord("forecast_period").points[0], fp_coord.points[0])
Пример #11
0
    def build_diagnostic_cube(
        neighbour_cube: Cube,
        diagnostic_cube: Cube,
        spot_values: ndarray,
        additional_dims: Optional[List[DimCoord]] = None,
        scalar_coords: Optional[List[AuxCoord]] = None,
        auxiliary_coords: Optional[List[AuxCoord]] = None,
        unique_site_id: Optional[Union[List[str], ndarray]] = None,
        unique_site_id_key: Optional[str] = None,
    ) -> Cube:
        """
        Builds a spot data cube containing the extracted diagnostic values.

        Args:
            neighbour_cube:
                This cube is needed as a source for information about the spot
                sites which needs to be included in the spot diagnostic cube.
            diagnostic_cube:
                The cube is needed to provide the name and units of the
                diagnostic that is being processed.
            spot_values:
                An array containing the diagnostic values extracted for the
                required spot sites.
            additional_dims:
                Optional list containing iris.coord.DimCoords with any leading
                dimensions required before spot data.
            scalar_coords:
                Optional list containing iris.coord.AuxCoords with all scalar coordinates
                relevant for the spot sites.
            auxiliary_coords:
                Optional list containing iris.coords.AuxCoords which are non-scalar.
            unique_site_id:
                Optional list of 8-digit unique site identifiers.
            unique_site_id_key:
                String to name the unique_site_id coordinate. Required if
                unique_site_id is in use.

        Returns:
            A spot data cube containing the extracted diagnostic data.
        """
        spot_diagnostic_cube = build_spotdata_cube(
            spot_values,
            diagnostic_cube.name(),
            diagnostic_cube.units,
            neighbour_cube.coord("altitude").points,
            neighbour_cube.coord(axis="y").points,
            neighbour_cube.coord(axis="x").points,
            neighbour_cube.coord("wmo_id").points,
            unique_site_id=unique_site_id,
            unique_site_id_key=unique_site_id_key,
            scalar_coords=scalar_coords,
            auxiliary_coords=auxiliary_coords,
            additional_dims=additional_dims,
        )
        return spot_diagnostic_cube
Пример #12
0
def truth_dataframe_to_cube(
    df: DataFrame,
    training_dates: DatetimeIndex,
) -> Cube:
    """Convert a truth DataFrame into an iris Cube.

    Args:
        df:
            DataFrame expected to contain the following columns: ob_value,
            time, wmo_id, diagnostic, latitude, longitude, altitude, cf_name,
            height, period and units. Any other columns are ignored.
        training_dates:
            Datetimes spanning the training period.

    Returns:
        Cube containing the truths from the training period.
    """
    cubelist = CubeList()
    for adate in training_dates:
        time_df = df.loc[(df["time"] == adate)]

        time_df = _preprocess_temporal_columns(time_df)

        if time_df.empty:
            continue

        # The following columns are expected to contain one unique value
        # per column.
        _unique_check(time_df, "diagnostic")

        if time_df["period"].isna().all():
            time_bounds = None
        else:
            period = time_df["period"].values[0]
            time_bounds = [adate - period, adate]

        time_coord = _define_time_coord(adate, time_bounds)
        height_coord = _define_height_coord(time_df["height"].values[0])

        cube = build_spotdata_cube(
            time_df["ob_value"].astype(np.float32),
            time_df["cf_name"].values[0],
            time_df["units"].values[0],
            time_df["altitude"].astype(np.float32),
            time_df["latitude"].astype(np.float32),
            time_df["longitude"].astype(np.float32),
            time_df["wmo_id"].values.astype("U5"),
            scalar_coords=[time_coord, height_coord],
        )
        cubelist.append(cube)

    if not cubelist:
        return
    return cubelist.merge_cube()
Пример #13
0
    def test_3d_spot_cube(self):
        """Test output with two extra dimensions"""
        data = np.ones((4, 2, 3), dtype=np.float32)
        result = build_spotdata_cube(
            data, 'air_temperature', 'degC', self.altitude, self.latitude,
            self.longitude, self.wmo_id,
            neighbour_methods=self.neighbour_methods,
            grid_attributes=self.grid_attributes)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims('neighbour_selection_method')[0], 1)
        self.assertEqual(result.coord_dims('grid_attributes')[0], 2)
Пример #14
0
    def test_3d_spot_cube(self):
        """Test output with two extra dimensions"""
        data = np.ones((2, 3, 4), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            *self.args,
            neighbour_methods=self.neighbour_methods,
            grid_attributes=self.grid_attributes,
        )

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims("neighbour_selection_method")[0], 0)
        self.assertEqual(result.coord_dims("grid_attributes")[0], 1)
Пример #15
0
    def test_site_list(self):
        """Test output for a list of sites"""
        data = np.array([1.6, 1.3, 1.4, 1.1])
        result = build_spotdata_cube(data, *self.args)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertArrayAlmostEqual(
            result.coord("altitude").points, self.altitude)
        self.assertArrayAlmostEqual(
            result.coord("latitude").points, self.latitude)
        self.assertArrayAlmostEqual(
            result.coord("longitude").points, self.longitude)
        self.assertArrayEqual(result.coord("wmo_id").points, self.wmo_id)
Пример #16
0
    def test_site_list(self):
        """Test output for a list of sites"""
        data = np.array([1.6, 1.3, 1.4, 1.1])
        result = build_spotdata_cube(data, 'air_temperature', 'degC',
                                     self.altitude, self.latitude,
                                     self.longitude, self.wmo_id)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertArrayAlmostEqual(
            result.coord('altitude').points, self.altitude)
        self.assertArrayAlmostEqual(
            result.coord('latitude').points, self.latitude)
        self.assertArrayAlmostEqual(
            result.coord('longitude').points, self.longitude)
        self.assertArrayEqual(result.coord('wmo_id').points, self.wmo_id)
Пример #17
0
    def setUp(self):
        """Set-up truth cubes."""
        super().setUp()
        # Create a cube of the format expected based on the input dataframe.
        cubes = iris.cube.CubeList([])

        for time, data_slice in zip([self.time1, self.time2, self.time3],
                                    _chunker(self.truth_data, 3)):
            time_coord = iris.coords.DimCoord(
                np.array(time.timestamp(), dtype=TIME_COORDS["time"].dtype),
                "time",
                bounds=[
                    np.array(t.timestamp(), dtype=TIME_COORDS["time"].dtype)
                    for t in [time - self.period, time]
                ],
                units=TIME_COORDS["time"].units,
            )
            cubes.append(
                build_spotdata_cube(
                    data_slice.astype(np.float32),
                    self.cf_name,
                    self.units,
                    np.array(self.altitudes, dtype=np.float32),
                    np.array(self.latitudes, dtype=np.float32),
                    np.array(self.longitudes, dtype=np.float32),
                    wmo_id=self.wmo_ids,
                    scalar_coords=[time_coord, self.height_coord],
                ))

        self.expected_period_truth = cubes.merge_cube()
        self.expected_instantaneous_truth = self.expected_period_truth.copy()
        self.expected_instantaneous_truth.coord("time").bounds = None

        unique_id_coord = iris.coords.AuxCoord(
            [self.wmo_ids[1] + "0"],
            long_name="station_id",
            units="no_unit",
            attributes={"unique_site_identifier": "true"},
        )
        self.expected_truth_station_id = self.expected_period_truth[:,
                                                                    [1]].copy(
                                                                    )
        site_id_dim = self.expected_truth_station_id.coord_dims(
            "spot_index")[0]
        self.expected_truth_station_id.add_aux_coord(unique_id_coord,
                                                     site_id_dim)
        self.expected_truth_station_id.coord("spot_index").points = np.array(
            [0], dtype=np.int32)
Пример #18
0
def wxcode_series_fixture(data, cube_type,
                          offset_reference_times: bool) -> Cube:
    """Generate a time series of weather code cubes for combination to create
    a period representative code. When offset_reference_times is set, each
    successive cube will have a reference time one hour older."""

    time = TARGET_TIME

    ntimes = len(data)
    wxcubes = []

    for i in range(ntimes):
        wxtime = time - timedelta(hours=i)
        wxbounds = [wxtime - timedelta(hours=1), wxtime]
        if offset_reference_times:
            wxfrt = time - timedelta(hours=18) - timedelta(hours=i)
        else:
            wxfrt = time - timedelta(hours=18)
        wxdata = np.ones((2, 2), dtype=np.int8)
        wxdata[0, 0] = data[i]

        if cube_type == "gridded":
            wxcubes.append(
                set_up_wxcube(data=wxdata,
                              time=wxtime,
                              time_bounds=wxbounds,
                              frt=wxfrt))
        else:
            time_coords = construct_scalar_time_coords(wxtime, wxbounds, wxfrt)
            time_coords = [crd for crd, _ in time_coords]
            latitudes = np.array([50, 52, 54, 56])
            longitudes = np.array([-4, -2, 0, 2])
            altitudes = wmo_ids = unique_site_id = np.arange(4)
            unique_site_id_key = "met_office_site_id"
            wxcubes.append(
                build_spotdata_cube(
                    wxdata.flatten(),
                    "weather_code",
                    1,
                    altitudes,
                    latitudes,
                    longitudes,
                    wmo_ids,
                    unique_site_id=unique_site_id,
                    unique_site_id_key=unique_site_id_key,
                    scalar_coords=time_coords,
                ))
    return wxcubes
Пример #19
0
    def test_neighbour_method(self):
        """Test output where neighbour_methods is populated"""
        data = np.array([[1.6, 1.7], [1.3, 1.5], [1.4, 1.4], [1.1, 1.3]])

        result = build_spotdata_cube(
            data, 'air_temperature', 'degC', self.altitude, self.latitude,
            self.longitude, self.wmo_id,
            neighbour_methods=self.neighbour_methods)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims('neighbour_selection_method')[0], 1)
        self.assertArrayEqual(
            result.coord('neighbour_selection_method').points, np.arange(2))
        self.assertArrayEqual(
            result.coord('neighbour_selection_method_name').points,
            self.neighbour_methods)
Пример #20
0
    def test_grid_attributes(self):
        """Test output where grid_attributes is populated"""
        data = np.array([[1.6, 1.7, 1.8], [1.3, 1.5, 1.5],
                         [1.4, 1.4, 1.5], [1.1, 1.3, 1.4]])

        result = build_spotdata_cube(
            data, 'air_temperature', 'degC', self.altitude, self.latitude,
            self.longitude, self.wmo_id, grid_attributes=self.grid_attributes,
            grid_attributes_dim=1)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims('grid_attributes')[0], 1)
        self.assertArrayEqual(
            result.coord('grid_attributes').points, np.arange(3))
        self.assertArrayEqual(
            result.coord('grid_attributes_key').points, self.grid_attributes)
Пример #21
0
    def test_neighbour_method(self):
        """Test output where neighbour_methods is populated"""
        data = np.array([[1.6, 1.3, 1.4, 1.1], [1.7, 1.5, 1.4, 1.3]])

        result = build_spotdata_cube(data,
                                     *self.args,
                                     neighbour_methods=self.neighbour_methods)

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims("neighbour_selection_method")[0], 0)
        self.assertArrayEqual(
            result.coord("neighbour_selection_method").points, np.arange(2))
        self.assertArrayEqual(
            result.coord("neighbour_selection_method_name").points,
            self.neighbour_methods,
        )
Пример #22
0
    def test_site_list_with_unique_id_coordinate(self):
        """Test output for a list of sites with a unique_id_coordinate."""
        data = np.array([1.6, 1.3, 1.4, 1.1])
        result = build_spotdata_cube(
            data,
            *self.args,
            unique_site_id=self.unique_site_id,
            unique_site_id_key="met_office_site_id",
        )

        self.assertArrayEqual(
            result.coord("met_office_site_id").points, self.unique_site_id)
        self.assertEqual(
            result.coord(
                "met_office_site_id").attributes["unique_site_identifier"],
            "true",
        )
Пример #23
0
    def test_grid_attributes(self):
        """Test output where grid_attributes is populated"""
        data = np.array([[1.6, 1.3, 1.4, 1.1], [1.7, 1.5, 1.4, 1.3],
                         [1.8, 1.5, 1.5, 1.4]])

        result = build_spotdata_cube(
            data,
            *self.args,
            grid_attributes=self.grid_attributes,
        )

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims("grid_attributes")[0], 0)
        self.assertArrayEqual(
            result.coord("grid_attributes").points, np.arange(3))
        self.assertArrayEqual(
            result.coord("grid_attributes_key").points, self.grid_attributes)
Пример #24
0
    def test_non_scalar_coords(self):
        """Test additional non-scalar coordinates, specifically multi-dimensional
        auxiliary coordinates like time for local-timezone products that have
        been reshaped into 1-dimensional coordinates that should be associated
        with the spot-index coordinate."""
        times = np.array([datetime(2015, 11, 23, i, 0) for i in range(0, 4)])
        time_coord = iris.coords.AuxCoord(times, "time")

        data = np.ones((2, 4), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            *self.args,
            auxiliary_coords=[time_coord],
            neighbour_methods=self.neighbour_methods,
        )
        self.assertArrayEqual(result.coord("time").points, times)
        self.assertEqual(result.coord_dims("time"),
                         result.coord_dims("spot_index"))
Пример #25
0
    def test_3d_spot_cube(self):
        """Test output with two extra dimensions"""
        data = np.ones((2, 3, 4), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            "air_temperature",
            "degC",
            self.altitude,
            self.latitude,
            self.longitude,
            self.wmo_id,
            neighbour_methods=self.neighbour_methods,
            grid_attributes=self.grid_attributes,
        )

        self.assertArrayAlmostEqual(result.data, data)
        self.assertEqual(result.coord_dims("neighbour_selection_method")[0], 0)
        self.assertEqual(result.coord_dims("grid_attributes")[0], 1)
Пример #26
0
    def build_diagnostic_cube(
        neighbour_cube: Cube,
        diagnostic_cube: Cube,
        spot_values: ndarray,
        additional_dims: Optional[List[DimCoord]] = None,
        scalar_coords: Optional[List[AuxCoord]] = None,
    ) -> Cube:
        """
        Builds a spot data cube containing the extracted diagnostic values.

        Args:
            neighbour_cube:
                This cube is needed as a source for information about the spot
                sites which needs to be included in the spot diagnostic cube.
            diagnostic_cube:
                The cube is needed to provide the name and units of the
                diagnostic that is being processed.
            spot_values:
                An array containing the diagnostic values extracted for the
                required spot sites.
            additional_dims:
                Optional list containing iris.coord.DimCoords with any leading
                dimensions required before spot data.
            scalar_coords:
                Optional list containing iris.coord.AuxCoords with all scalar coordinates
                relevant for the spot sites.

        Returns:
            A spot data cube containing the extracted diagnostic data.
        """

        neighbour_cube = build_spotdata_cube(
            spot_values,
            diagnostic_cube.name(),
            diagnostic_cube.units,
            neighbour_cube.coord("altitude").points,
            neighbour_cube.coord(axis="y").points,
            neighbour_cube.coord(axis="x").points,
            neighbour_cube.coord("wmo_id").points,
            scalar_coords=scalar_coords,
            additional_dims=additional_dims,
        )
        return neighbour_cube
Пример #27
0
def spot_fixture():
    alts = np.array([15, 82, 0, 4, 15, 269], dtype=np.float32)
    lats = np.array([60.75, 60.13, 58.95, 57.37, 58.22, 57.72],
                    dtype=np.float32)
    lons = np.array([-0.85, -1.18, -2.9, -7.40, -6.32, -4.90],
                    dtype=np.float32)
    wmo_ids = ["3002", "3005", "3017", "3023", "3026", "3031"]
    cube = build_spotdata_cube(
        np.arange(6).astype(np.float32),
        "air_temperature",
        "degC",
        alts,
        lats,
        lons,
        wmo_ids,
    )
    cube.add_aux_coord(
        iris.coords.AuxCoord([50], long_name="percentile", units="%"))
    return cube
Пример #28
0
    def test_scalar_coords(self):
        """Test additional scalar coordinates"""
        [(time_coord, _), (frt_coord, _), (fp_coord, _)
         ] = construct_scalar_time_coords(datetime(2015, 11, 23, 4, 30), None,
                                          datetime(2015, 11, 22, 22, 30))

        data = np.ones((2, 4), dtype=np.float32)
        result = build_spotdata_cube(
            data,
            *self.args,
            scalar_coords=[time_coord, frt_coord, fp_coord],
            neighbour_methods=self.neighbour_methods,
        )

        self.assertEqual(result.coord("time").points[0], time_coord.points[0])
        self.assertEqual(
            result.coord("forecast_reference_time").points[0],
            frt_coord.points[0])
        self.assertEqual(
            result.coord("forecast_period").points[0], fp_coord.points[0])
Пример #29
0
def _build_spot_probability_cube(dummy_point_locations, dummy_string_ids):
    """Set up a spot cube with an IMPROVER-style threshold coordinate and
    suitable data"""
    threshold_coord = DimCoord(
        ECC_TEMPERATURE_THRESHOLDS,
        standard_name="air_temperature",
        var_name="threshold",
        units="degC",
        attributes={"spp__relative_to_threshold": "above"},
    )
    return build_spotdata_cube(
        ECC_SPOT_PROBABILITIES,
        name="probability_of_air_temperature_above_threshold",
        units="1",
        altitude=dummy_point_locations,
        latitude=dummy_point_locations,
        longitude=dummy_point_locations,
        wmo_id=dummy_string_ids,
        additional_dims=[threshold_coord],
    )
Пример #30
0
    def test_scalar_coords(self):
        """Test additional scalar coordinates"""
        [(time_coord, _), (frt_coord, _), (fp_coord, _)] = (
            construct_scalar_time_coords(
                datetime(2015, 11, 23, 4, 30), None,
                datetime(2015, 11, 22, 22, 30)))

        data = np.ones((4, 2), dtype=np.float32)
        result = build_spotdata_cube(
            data, 'air_temperature', 'degC', self.altitude, self.latitude,
            self.longitude, self.wmo_id,
            scalar_coords=[time_coord, frt_coord, fp_coord],
            neighbour_methods=self.neighbour_methods)

        self.assertEqual(result.coord('time').points[0], time_coord.points[0])
        self.assertEqual(
            result.coord('forecast_reference_time').points[0],
            frt_coord.points[0])
        self.assertEqual(
            result.coord('forecast_period').points[0], fp_coord.points[0])