def test_sample_ranking_with_no_exceptions(self): """ Test if ranking is built without any exception. """ sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable metadata") self.rank.build_rank([sample1, sample2, sample3])
def __init__(self, docid, indexable_data, original_data, highlighted_data=None): Indexable.__init__(self, docid, indexable_data) self.original_data = original_data self.highlighted_data = highlighted_data
def test_sample_indexing_and_validate_items(self): sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable metadata") self.index.build_index([sample1, sample2, sample3]) expected_term_index = defaultdict(int) expected_term_index['indexable'] = [0, 1, 2] self.assertItemsEqual(self.index.term_index['indexable'], expected_term_index['indexable'])
def test_one_term_search(self): """ Test if the search for one term returns expected results. """ sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable super metadata") expected_indices = [1, 2] self.index.build_index([sample1, sample2, sample3]) search_results = self.index.search_terms(["super"]) self.assertItemsEqual(search_results, expected_indices)
def test_mixed_valid_invalid_term_search(self): """ Test if the search returns when there are valid and invalid terms mixed. """ sample1 = Indexable(1, "this is an indexable simple metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable metadata") expected_indices = [] self.index.build_index([sample1, sample2, sample3]) search_results = self.index.search_terms(["not_valid_term", "super"]) self.assertItemsEqual(search_results, expected_indices)
def test_three_terms_search_with_stop_words(self): """ Test if the search for stop words returns expected results. """ sample1 = Indexable(1, "this is an indexable simple metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable super metadata") expected_indices = [0, 1, 2] self.index.build_index([sample1, sample2, sample3]) search_results = self.index.search_terms(["this", "is", "metadata"]) self.assertItemsEqual(search_results, expected_indices)
def test_stop_word_search(self): """ Test if stop words are correctly ignored. """ sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable super metadata") expected_indices = [] self.index.build_index([sample1, sample2, sample3]) search_results = self.index.search_terms(["this"]) self.assertItemsEqual(search_results, expected_indices)
def test_doc_frequency_matrix_with_sample2(self): """ Test if document frequency matrix is correctly built. """ sample1 = Indexable(1, "the sky is blue") sample2 = Indexable(2, "the sun is bright") self.rank.build_rank([sample1, sample2]) expected_vocab_indices = {'blue': 0, 'sun': 2, 'bright': 3, 'sky': 1} expected_tf = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) self.assertEqual(self.rank.vocabulary, expected_vocab_indices) np.testing.assert_array_equal(self.rank.ft_matrix.todense(), expected_tf)
def test_doc_inverse_term_frequency_vector2(self): """ Test if document inverse term frequency vector is correctly built. """ sample1 = Indexable(1, "the sky is blue") sample2 = Indexable(2, "the sun is bright") self.rank.build_rank([sample1, sample2]) expected_idf = [1.40546511, 1.40546511, 1.40546511, 1.40546511] expected_tf_idf = [[0.70710678, 0.70710678, 0, 0], [0, 0, 0.70710678, 0.70710678]] np.testing.assert_almost_equal(self.rank.ifd_diag_matrix.diagonal(), expected_idf, 4) np.testing.assert_almost_equal(self.rank.tf_idf_matrix.todense(), expected_tf_idf, 4)
def __init__(self, docid, indexable_data, original_data, url, user_id, time_of_visit, relevance, keywords, highlighted_data=None): Indexable.__init__(self, docid, indexable_data) self.original_data = original_data self.highlighted_data = highlighted_data self.url = url self.user_id = user_id self.time_of_visit = time_of_visit self.relevance = relevance self.keywords = keywords
def test_doc_inverse_term_frequency_vector1(self): """ Test if document inverse term frequency vector is correctly built. """ sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable metadata") self.rank.build_rank([sample1, sample2, sample3]) expected_idf = [1., 1., 1.28768207, 1.69314718, 1.69314718] expected_tf_idf = [[0.52284231, 0.52284231, 0.67325467, 0, 0], [0.39148397, 0.39148397, 0.50410689, 0.66283998, 0], [0.45329466, 0.45329466, 0, 0, 0.76749457]] np.testing.assert_almost_equal(self.rank.ifd_diag_matrix.diagonal(), expected_idf, 4) np.testing.assert_almost_equal(self.rank.tf_idf_matrix.todense(), expected_tf_idf, 4)
def test_score_computation(self): """ Test if document score is correctly calculated. """ sample1 = Indexable(1, "the sky is blue") self.rank.build_rank([sample1]) np.testing.assert_almost_equal(self.rank.compute_rank(0, ["blue"]), 0.707106, 5) np.testing.assert_almost_equal(self.rank.compute_rank(0, ["sky"]), 0.7071067, 5) np.testing.assert_almost_equal( self.rank.compute_rank(0, ["blue", "sky"]), 1.414213, 5)
def test_doc_frequency_matrix_with_sample1(self): """ Test if document frequency matrix is correctly built. """ sample1 = Indexable(1, "this is an indexable metadata") sample2 = Indexable(2, "this is an indexable super metadata") sample3 = Indexable(3, "this is another indexable metadata") self.rank.build_rank([sample1, sample2, sample3]) expected_vocab_indices = { 'an': 2, 'super': 3, 'indexable': 1, 'metadata': 0, 'another': 4 } expected_tf = np.array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 0, 0, 1]]) self.assertEqual(self.rank.vocabulary, expected_vocab_indices) np.testing.assert_array_equal(self.rank.ft_matrix.todense(), expected_tf)
def test_sample_index_words_count(self): sample = Indexable(1, "this is an indexable metadata, that is an indexable super metadata") expected_words_count = defaultdict(int) expected_words_count['this'] = 1 expected_words_count['that'] = 1 expected_words_count['super'] = 1 expected_words_count['is'] = 2 expected_words_count['metadata,'] = 1 # Exact terms are not yet processed. expected_words_count['metadata'] = 1 expected_words_count['indexable'] = 2 expected_words_count['an'] = 2 self.assertItemsEqual(sample.words_count, expected_words_count)
def __init__(self, docid, indexable_data, original_data, highlighted_data = None): Indexable.__init__(self, docid, indexable_data) self.original_data = original_data self.highlighted_data = highlighted_data