Пример #1
0
def assemble_cx(stmts, out_file_prefix, network_type):
    """Return a CX assembler."""
    stmts = ac.filter_belief(stmts, 0.95)
    stmts = ac.filter_top_level(stmts)
    if network_type == 'direct':
        stmts = ac.filter_direct(stmts)

    out_file = '%s_%s.cx' % (out_file_prefix, network_type)

    ca = CxAssembler()
    ca.add_statements(stmts)
    model = ca.make_model()
    ca.save_model(out_file)
    return ca
Пример #2
0
def test_eidos_to_cx():
    stmts = __get_stmts_from_remote_jsonld()
    cx = CxAssembler()

    # Make sure these don't error
    cx.add_statements(stmts)
    cx.make_model()
    test_fname = 'test_cag_to_cx.cx'
    try:
        cx.save_model(test_fname)
        assert os.path.exists(test_fname), "Failed to create cx file."
    finally:
        if os.path.exists(test_fname):
            os.remove(test_fname)
    return
Пример #3
0
def test_eidos_to_cx():
    stmts = __get_stmts_from_remote_jsonld()
    cx = CxAssembler()

    # Make sure these don't error
    cx.add_statements(stmts)
    cx.make_model()
    test_fname = 'test_cag_to_cx.cx'
    try:
        cx.save_model(test_fname)
        assert os.path.exists(test_fname), "Failed to create cx file."
    finally:
        if os.path.exists(test_fname):
            os.remove(test_fname)
    return
Пример #4
0
def assemble_cx(stmts, save_file):
    cxa = CxAssembler(stmts)
    cxa.make_model(add_indra_json=False)
    cxa.save_model(save_file)
    return cxa
Пример #5
0
def assemble_sif(stmts, data, out_file):
    """Return an assembled SIF."""
    # Filter for high-belief statements
    stmts = ac.filter_belief(stmts, 0.99)
    stmts = ac.filter_top_level(stmts)
    # Filter for Activation / Inhibition
    stmts_act = ac.filter_by_type(stmts, Activation)
    stmts_inact = ac.filter_by_type(stmts, Inhibition)
    stmts = stmts_act + stmts_inact
    # Get Ras227 and filter statments
    ras_genes = process_data.get_ras227_genes()
    #ras_genes = [x for x in ras_genes if x not in ['YAP1']]
    stmts = ac.filter_gene_list(stmts, ras_genes, 'all')

    # Get the drugs inhibiting their targets as INDRA
    # statements
    def get_drug_statements():
        drug_targets = process_data.get_drug_targets()
        drug_stmts = []
        for dn, tns in drug_targets.items():
            da = Agent(dn + ':Drugs')
            for tn in tns:
                ta = Agent(tn)
                drug_stmt = Inhibition(da, ta)
                drug_stmts.append(drug_stmt)
        return drug_stmts

    drug_stmts = get_drug_statements()
    stmts = stmts + drug_stmts
    # Rewrite statements to replace genes with their corresponding
    # antibodies when possible
    stmts = rewrite_ab_stmts(stmts, data)

    def filter_ab_edges(st, policy='all'):
        st_out = []
        for s in st:
            if policy == 'all':
                all_ab = True
                for a in s.agent_list():
                    if a is not None:
                        if a.name.find('_p') == -1 and \
                           a.name.find('Drugs') == -1:
                            all_ab = False
                            break
                if all_ab:
                    st_out.append(s)
            elif policy == 'one':
                any_ab = False
                for a in s.agent_list():
                    if a is not None and a.name.find('_p') != -1:
                        any_ab = True
                        break
                if any_ab:
                    st_out.append(s)
        return st_out

    stmts = filter_ab_edges(stmts, 'all')

    # Get a list of the AB names that end up being covered in the prior network
    # This is important because other ABs will need to be taken out of the
    # MIDAS file to work.
    def get_ab_names(st):
        prior_abs = set()
        for s in st:
            for a in s.agent_list():
                if a is not None:
                    if a.name.find('_p') != -1:
                        prior_abs.add(a.name)
        return sorted(list(prior_abs))

    pkn_abs = get_ab_names(stmts)

    def get_drug_names(st):
        prior_drugs = set()
        for s in st:
            for a in s.agent_list():
                if a is not None:
                    if a.name.find('Drugs') != -1:
                        prior_drugs.add(a.name.split(':')[0])
        return sorted(list(prior_drugs))

    pkn_drugs = get_drug_names(stmts)
    print('Boolean PKN contains these antibodies: %s' % ', '.join(pkn_abs))

    # Because of a bug in CNO,
    # node names containing AND need to be replaced
    # node names containing - need to be replaced
    # node names starting in a digit need to be replaced
    # must happen before SIF assembly, but not sooner as that will drop
    # names from the MIDAS file
    def rename_nodes(st):
        for s in st:
            for a in s.agent_list():
                if a is not None:
                    if a.name.find('AND') != -1:
                        a.name = a.name.replace('AND', 'A_ND')
                    if a.name.find('-') != -1:
                        a.name = a.name.replace('-', '_')
                    if a.name[0].isdigit():
                        a.name = 'abc_' + a.name

    rename_nodes(stmts)
    # Make the SIF model
    sa = SifAssembler(stmts)
    sa.make_model(use_name_as_key=True)
    sif_str = sa.print_model()
    # assemble and dump a cx of the sif
    ca = CxAssembler()
    ca.add_statements(stmts)
    model = ca.make_model()
    ca.save_model('sif.cx')
    with open(out_file, 'wb') as fh:
        fh.write(sif_str.encode('utf-8'))
    # Make the MIDAS data file used for training the model
    midas_data = process_data.get_midas_data(data, pkn_abs, pkn_drugs)
    return sif_str
Пример #6
0
def assemble_cx(statements):
    cxa = CxAssembler(statements)
    model = cxa.make_model()
    cxa.save_model('model.cx')
Пример #7
0
def assemble_cx(statements):
    cxa = CxAssembler(statements)
    model = cxa.make_model()
    cxa.save_model('model.cx')