data = tools.load_file(filename, sep=',', header=1) data = tools.downsampling(data, 50) t = tools.selectCol(data, columns_in, "TIME") acc = tools.selectCol(data, columns_in, col_acc) gyr = tools.selectCol(data, columns_in, col_gyr) mag = tools.selectCol(data, columns_in, col_mag) lab = tools.selectCol(data, columns_in, "LAB") acc = inertial.convert_units(acc, coeff=sensAccCoeff) gyr = inertial.convert_units(gyr, coeff=sensGyrCoeff) mag = inertial.convert_units(mag, coeff=sensMagCoeff) # tools.array_labels_to_csv(np.column_stack([t, acc]), np.array(columns_in), "./output/preproc_"+filename[7:-4]+".csv") #-----EXTRACT FEATURES----- windows, winlab = win.get_windows_no_mix(t, lab, 1, 0.5) feats_acc, fcol_acc = inertial.extract_features_acc(acc, t, col_acc, windows) feats_gyr, fcol_gyr = inertial.extract_features_gyr(gyr, t, col_gyr, windows) feats_mag, fcol_mag = inertial.extract_features_mag(mag, t, col_mag, windows) feats = np.column_stack([feats_acc, feats_gyr, feats_mag, winlab]) columns_out = np.r_[fcol_acc, fcol_gyr, fcol_mag, np.array(["LAB"])] # print feats.shape # print columns.shape, columns tools.array_labels_to_csv(feats, columns_out, "./output2/feat_" + filename[7:-4] + ".csv") # # feats.to_csv("./output/feat_6.csv")
plt.figure(1) plt.plot(data.timestamp, data[lables_acc]) plt.legend(lables_acc) plt.xlabel("Time (ms)") plt.ylabel("Acceleration (m/s^2)") plt.title("Accelerometer") plt.figure(2) plt.plot(data.timestamp, data[lables_gyr]) plt.legend(lables_gyr) plt.xlabel("Time (ms)") plt.ylabel("Angular Speed (degree/s)") plt.title("Gyroscope") plt.figure(3) plt.plot(data.timestamp, data[lables_mag]) plt.legend(lables_mag) plt.title("Magnetometer") plt.ylabel("uT") plt.xlabel("Time (ms)") plt.show() # data=inertial.convert_units(data, lables[1:], coeff=empaticaAccCoeff) # print data windows=win.generate_dummy_windows(len(data), 100, 50) feats_acc=inertial.extract_features_acc(data, windows, fsamp=sensfsamp, col_acc=lables_acc) feats_gyr=inertial.extract_features_gyr(data, windows, fsamp=sensfsamp, col_gyr=lables_gyr) feats_mag=inertial.extract_features_mag(data, windows, fsamp=sensfsamp, col_mag=lables_mag) feats=pd.concat([feats_acc, feats_gyr, feats_mag], axis=1) print feats.shape feats.to_csv("./output/feat_"+filename[7:-4]+".csv")
data = tools.load_file(filename, sep=',', header=1) data=tools.downsampling(data, 50) t=tools.selectCol(data, columns_in, "TIME") acc=tools.selectCol(data, columns_in, col_acc) gyr=tools.selectCol(data, columns_in, col_gyr) mag=tools.selectCol(data, columns_in, col_mag) lab=tools.selectCol(data, columns_in, "LAB") acc= inertial.convert_units(acc, coeff=sensAccCoeff) gyr= inertial.convert_units(gyr, coeff=sensGyrCoeff) mag= inertial.convert_units(mag, coeff=sensMagCoeff) # tools.array_labels_to_csv(np.column_stack([t, acc]), np.array(columns_in), "./output/preproc_"+filename[7:-4]+".csv") #-----EXTRACT FEATURES----- windows, winlab=win.get_windows_no_mix(t,lab , 1, 0.5) feats_acc, fcol_acc= inertial.extract_features_acc(acc, t, col_acc, windows) feats_gyr, fcol_gyr= inertial.extract_features_gyr(gyr, t, col_gyr, windows) feats_mag, fcol_mag= inertial.extract_features_mag(mag, t, col_mag, windows) feats=np.column_stack([feats_acc, feats_gyr, feats_mag, winlab]) columns_out=np.r_[fcol_acc, fcol_gyr, fcol_mag, np.array(["LAB"])] # print feats.shape # print columns.shape, columns tools.array_labels_to_csv(feats, columns_out, "./output2/feat_"+filename[7:-4]+".csv") # # feats.to_csv("./output/feat_6.csv")