Пример #1
0
    def test_dot_function_e_Cat(self):
        """ CONTINUOUS states and outcomes, but add a final (fourth) hidden state factor
        Now, when arguments themselves are instances of Categorical """
        array_path = os.path.join(os.getcwd(), "tests/data/dot_e.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"]
        obs = Categorical(values=mat_contents["o"])
        states = mat_contents["s"]
        states_array_version = np.empty(states.shape[1], dtype=object)
        for i in range(states.shape[1]):
            states_array_version[i] = states[0][i][0]
        states_array_version = Categorical(values=states_array_version)

        result_1 = mat_contents["result1"]
        result_2 = mat_contents["result2"]
        result_3 = mat_contents["result3"]

        A = Categorical(values=A)
        result_1_py = A.dot(obs, return_numpy=True)
        self.assertTrue(np.isclose(result_1, result_1_py).all())

        result_2_py = A.dot(states_array_version, return_numpy=True)
        result_2_py = result_2_py.astype("float64")[:, np.newaxis]
        self.assertTrue(np.isclose(result_2, result_2_py).all())

        result_3_py = A.dot(states_array_version,
                            dims_to_omit=[0],
                            return_numpy=True)
        self.assertTrue(np.isclose(result_3, result_3_py).all())
Пример #2
0
    def test_dot_function_c(self):
        """ DISCRETE states and outcomes, but also a third hidden state factor """
        array_path = os.path.join(os.getcwd(), "tests/data/dot_c.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"]
        obs = mat_contents["o"]
        states = mat_contents["s"]
        states_array_version = np.empty(states.shape[1], dtype=object)
        for i in range(states.shape[1]):
            states_array_version[i] = states[0][i][0]

        result_1 = mat_contents["result1"]
        result_2 = mat_contents["result2"]
        result_3 = mat_contents["result3"]

        A = Categorical(values=A)
        result_1_py = A.dot(obs, return_numpy=True)
        self.assertTrue(np.isclose(result_1, result_1_py).all())

        result_2_py = A.dot(states_array_version, return_numpy=True)
        result_2_py = result_2_py.astype("float64")[:, np.newaxis]
        self.assertTrue(np.isclose(result_2, result_2_py).all())

        result_3_py = A.dot(states_array_version,
                            dims_to_omit=[0],
                            return_numpy=True)
        self.assertTrue(np.isclose(result_3, result_3_py).all())
Пример #3
0
    def test_dot_function_a_Cat(self):
        """ test with vectors and matrices, discrete state / outcomes
        Now, when arguments themselves are instances of Categorical
        """

        array_path = os.path.join(os.getcwd(), "tests/data/dot_a.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"]
        obs = Categorical(values=mat_contents["o"])
        states = Categorical(values=mat_contents["s"][0])
        result_1 = mat_contents["result1"]
        result_2 = mat_contents["result2"]
        result_3 = mat_contents["result3"]

        A = Categorical(values=A)
        result_1_py = A.dot(obs, return_numpy=True)
        self.assertTrue(np.isclose(result_1, result_1_py).all())

        result_2_py = A.dot(states, return_numpy=True)
        result_2_py = result_2_py.astype("float64")[:, np.newaxis]
        self.assertTrue(np.isclose(result_2, result_2_py).all())

        result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True)
        self.assertTrue(np.isclose(result_3, result_3_py).all())
Пример #4
0
    def test_dot_function_b(self):
        """ continuous states and outcomes """
        array_path = os.path.join(os.getcwd(), "tests/data/dot_b.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"]
        obs = mat_contents["o"]
        states = mat_contents["s"]
        states = np.array(states, dtype=object)

        result_1 = mat_contents["result1"]
        result_2 = mat_contents["result2"]
        result_3 = mat_contents["result3"]

        A = Categorical(values=A)
        result_1_py = A.dot(obs, return_numpy=True)
        self.assertTrue(np.isclose(result_1, result_1_py).all())

        result_2_py = A.dot(states, return_numpy=True)
        result_2_py = result_2_py.astype("float64")[:, np.newaxis]
        self.assertTrue(np.isclose(result_2, result_2_py).all())

        result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True)
        self.assertTrue(np.isclose(result_3, result_3_py).all())
Пример #5
0
# %% Debugging for Categorical.dot()
array_path = os.path.join(os.getcwd(), "tests/data/dot_a.mat")
mat_contents = loadmat(file_name=array_path)

A = mat_contents["A"]
obs = mat_contents["o"]
states = mat_contents["s"]
states = np.array(states, dtype=object)

result_1 = mat_contents["result1"]
result_2 = mat_contents["result2"]
result_3 = mat_contents["result3"]

A = Categorical(values=A)

result_1_py = A.dot(obs, return_numpy=True)
print(np.isclose(result_1, result_1_py).all())

result_2_py = A.dot(states, return_numpy=True)
result_2_py = result_2_py.astype("float64")[:, np.newaxis]
print(np.isclose(result_2, result_2_py).all())

result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True)
print(np.isclose(result_3, result_3_py).all())

# now try by putting obs and states into Categoricals themselves
obs = Categorical(values=mat_contents["o"])
states = Categorical(values=mat_contents["s"][0])

result_1_py_cat = A.dot(obs, return_numpy=True)
print(np.isclose(result_1, result_1_py_cat).all())