def regression_maker(j, x, y): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j], i=j, total=G), level=level) data = sklearn_regression.sklearn_gene(x, utils.scale_vector(y), copy.copy(model)) data['ind'] = j return j, data
def regression_maker(j, x, y, pp, weights): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j], i=j, total=G), level=level) data = bayes_stats.bbsr(x, utils.scale_vector(y), pp[j, :].flatten(), weights[j, :].flatten(), nS) data['ind'] = j return j, data
def regression_maker(j): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=self.genes[j], i=j, total=self.G), level=level) data = stars_model_select(self.X.values, utils.scale_vector(self.Y.get_gene_data(j, force_dense=True, flatten=True)), self.alphas, method=self.method, num_subsamples=self.num_subsamples, random_seed=self.random_seed, **self.params) data['ind'] = j return data
def regression_maker(j): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format( gn=self.genes[j], i=j, total=self.G), level=level) data = elastic_net( self.X.values, utils.scale_vector( self.Y.get_gene_data(j, force_dense=True).flatten()), self.params) data['ind'] = j return data
def regression_maker(j): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format( gn=self.genes[j], i=j, total=self.G), level=level) data = sklearn_gene(self.X.values, utils.scale_vector( self.Y.get_gene_data(j, force_dense=True, flatten=True)), copy.copy(self.model), min_coef=self.min_coef) data['ind'] = j return data
def regression_maker(j, x, y): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j], i=j, total=G), level=level) data = stability_selection.stars_model_select( x, utils.scale_vector(y), alphas, num_subsamples=num_subsamples, method=method, random_seed=random_seed, **params) data['ind'] = j return j, data
def regression_maker(j): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format( gn=self.genes[j], i=j, total=self.G), level=level) data = bayes_stats.bbsr( self.X.values, utils.scale_vector( self.Y.get_gene_data(j, force_dense=True, flatten=True)), self.pp.iloc[j, :].values.flatten(), self.weights_mat.iloc[j, :].values.flatten(), self.nS, ordinary_least_squares=self.ols_only) data['ind'] = j return data