def regression_maker(j, x, y):
     level = 0 if j % 100 == 0 else 2
     utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j],
                                                              i=j,
                                                              total=G),
                          level=level)
     data = sklearn_regression.sklearn_gene(x, utils.scale_vector(y),
                                            copy.copy(model))
     data['ind'] = j
     return j, data
 def regression_maker(j, x, y, pp, weights):
     level = 0 if j % 100 == 0 else 2
     utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j],
                                                              i=j,
                                                              total=G),
                          level=level)
     data = bayes_stats.bbsr(x, utils.scale_vector(y), pp[j, :].flatten(),
                             weights[j, :].flatten(), nS)
     data['ind'] = j
     return j, data
Пример #3
0
        def regression_maker(j):
            level = 0 if j % 100 == 0 else 2
            utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=self.genes[j], i=j, total=self.G), level=level)

            data = stars_model_select(self.X.values,
                                      utils.scale_vector(self.Y.get_gene_data(j, force_dense=True, flatten=True)),
                                      self.alphas,
                                      method=self.method,
                                      num_subsamples=self.num_subsamples,
                                      random_seed=self.random_seed,
                                      **self.params)
            data['ind'] = j
            return data
Пример #4
0
        def regression_maker(j):
            level = 0 if j % 100 == 0 else 2
            utils.Debug.allprint(base_regression.PROGRESS_STR.format(
                gn=self.genes[j], i=j, total=self.G),
                                 level=level)

            data = elastic_net(
                self.X.values,
                utils.scale_vector(
                    self.Y.get_gene_data(j, force_dense=True).flatten()),
                self.params)
            data['ind'] = j
            return data
        def regression_maker(j):
            level = 0 if j % 100 == 0 else 2
            utils.Debug.allprint(base_regression.PROGRESS_STR.format(
                gn=self.genes[j], i=j, total=self.G),
                                 level=level)

            data = sklearn_gene(self.X.values,
                                utils.scale_vector(
                                    self.Y.get_gene_data(j,
                                                         force_dense=True,
                                                         flatten=True)),
                                copy.copy(self.model),
                                min_coef=self.min_coef)
            data['ind'] = j
            return data
 def regression_maker(j, x, y):
     level = 0 if j % 100 == 0 else 2
     utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=genes[j],
                                                              i=j,
                                                              total=G),
                          level=level)
     data = stability_selection.stars_model_select(
         x,
         utils.scale_vector(y),
         alphas,
         num_subsamples=num_subsamples,
         method=method,
         random_seed=random_seed,
         **params)
     data['ind'] = j
     return j, data
Пример #7
0
        def regression_maker(j):
            level = 0 if j % 100 == 0 else 2
            utils.Debug.allprint(base_regression.PROGRESS_STR.format(
                gn=self.genes[j], i=j, total=self.G),
                                 level=level)

            data = bayes_stats.bbsr(
                self.X.values,
                utils.scale_vector(
                    self.Y.get_gene_data(j, force_dense=True, flatten=True)),
                self.pp.iloc[j, :].values.flatten(),
                self.weights_mat.iloc[j, :].values.flatten(),
                self.nS,
                ordinary_least_squares=self.ols_only)
            data['ind'] = j
            return data