Пример #1
0
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    criterion = SorensenDiceLoss()
    loss_train = LossWrapper(criterion=criterion,
                             transforms=Compose(ApplyAndRemoveMask(),
                                                InvertTarget()))
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              ApplyAndRemoveMask(),
                                              InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    offsets = data_config['volume_config']['segmentation']['affinity_config'][
        'offsets']
    metric = ArandErrorFromMulticut(average_slices=False,
                                    use_2d_ws=True,
                                    n_threads=8,
                                    weight_edges=True,
                                    offsets=offsets)

    trainer = Trainer(model)\
        .save_every((1000, 'iterations'),
                    to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))\
        .register_callback(GarbageCollection())

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'),
        log_histograms_every='never').observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
def set_up_training(project_directory, config, data_config, criterion, balance,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    # TODO
    logger.info("Using criterion: %s" % criterion)

    # TODO this should go somewhere more prominent
    affinity_offsets = data_config['volume_config']['segmentation'][
        'affinity_offsets']

    # TODO implement affinities on gpu again ?!
    criterion = CRITERIA[criterion]
    loss = LossWrapper(
        criterion=criterion(),
        transforms=Compose(MaskTransitionToIgnoreLabel(affinity_offsets),
                           RemoveSegmentationFromTarget(), InvertTarget()),
        weight_function=BalanceAffinities(
            ignore_label=0, offsets=affinity_offsets) if balance else None)

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    # use multicut pipeline for validation
    metric = ArandErrorFromSegmentationPipeline(
        local_affinity_multicut_from_wsdt2d(n_threads=10, time_limit=120))
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations')).observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Пример #3
0
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    affinity_offsets = data_config['volume_config']['segmentation'][
        'affinity_offsets']
    loss = MultiOutputLossWrapper(
        criterion=SorensenDiceLoss(),
        transforms=Compose(MaskTransitionToIgnoreLabel(affinity_offsets),
                           RemoveSegmentationFromTarget(), InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    # use multicut pipeline for validation
    # metric = ArandErrorFromSegmentationPipeline(local_affinity_multicut_from_wsdt2d(n_threads=10,
    #                                                                                 time_limit=120))

    # use damws for validation
    stride = [2, 10, 10]
    metric = ArandErrorFromSegmentationPipeline(
        DamWatershed(affinity_offsets, stride, randomize_bounds=False))
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))

    # FIXME some issues with conda tf for torch0.3 env
    # logger.info("Building logger.")
    # # Build logger
    # tensorboard = TensorboardLogger(log_scalars_every=(1, 'iteration'),
    #                                 log_images_every=(100, 'iterations')).observe_states(
    #     ['validation_input', 'validation_prediction, validation_target'],
    #     observe_while='validating'
    # )

    # trainer.build_logger(tensorboard, log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Пример #4
0
def set_up_training(project_directory, config, data_config):

    # Get model
    model_name = config.get('model_name')
    model = getattr(models, model_name)(**config.get('model_kwargs'))

    criterion = SorensenDiceLoss()
    loss_train = LossWrapper(criterion=criterion, transforms=InvertTarget())
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.75

    offsets = data_config['volume_config']['segmentation']['affinity_config'][
        'offsets']
    strides = [1, 10, 10]
    metric = ArandErrorFromMWS(average_slices=False,
                               offsets=offsets,
                               strides=strides,
                               randomize_strides=False)

    trainer = Trainer(model)\
        .save_every((1000, 'iterations'),
                    to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness,
                                                     verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.99,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))\

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'),
        log_histograms_every='never').observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Пример #5
0
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    loss = dice_loss()
    loss_val = dice_loss(is_val=True)
    metric = mws_metric()
    # metric = loss_val

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.9

    trainer = Trainer(model)\
        .save_every((1000, 'iterations'),
                    to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=5)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))\
        .register_callback(GarbageCollection())\

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'),
        log_histograms_every='never').observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
    if not os.path.exists(logs_dir):
        os.mkdir(logs_dir)
    log_info('Logs will be saved to %s' % (logs_dir))

    # Build trainer
    trainer = Trainer(model) \
        .build_criterion('CrossEntropyLoss') \
        .build_metric('CategoricalError') \
        .build_optimizer('Adam', lr=args.lr, betas=(0.9, 0.999), eps=1e-08) \
        .validate_every((1, 'epochs')) \
        .save_every((5, 'epochs')) \
        .save_to_directory(model_dir) \
        .set_max_num_epochs(10000) \
        .register_callback(GradChecker()) \
        .register_callback(AutoLR(0.96, (1, 'epochs'), monitor_momentum=0.9,
                           monitor_while='validating',
                           consider_improvement_with_respect_to='best'))\
        .build_logger(TensorboardLogger(log_scalars_every=(1, 'iteration'),
                                        log_images_every=(1, 'epoch')),
                      log_directory=logs_dir)

    # Bind loaders
    trainer \
        .bind_loader('train', train_dl) \
        .bind_loader('validate', test_dl)

    if torch.cuda.is_available():
        trainer.cuda()

    trainer.fit()
    def log_histogram(self, tag, values, bins=1000):
        pass

    logger.log_histogram = log_histogram

    trainer = Trainer(model)\
        .build_criterion('CrossEntropyLoss') \
        .build_metric('CategoricalError') \
        .build_optimizer('Adam', weight_decay=args.regularization) \
        .evaluate_metric_every((10, 'iterations')) \
        .validate_every((1, 'epochs')) \
        .save_every((1, 'epochs')) \
        .save_to_directory(weight_dir) \
        .set_max_num_epochs(10000) \
        .build_logger(logger, log_directory=logs_dir) \
        .register_callback(AutoLR(0.9, (1, 'epochs'),
                           consider_improvement_with_respect_to='previous'))
    # .register_callback(AutoLR(0.99, (100, 'epochs'), monitor_momentum=0.95,
    #                    monitor_while='validating',
    #                    consider_improvement_with_respect_to='best'))

    # Bind loaders
    trainer \
        .bind_loader('train', train_dl) \
        .bind_loader('validate', test_dl)

    if torch.cuda.is_available():
        trainer.cuda()

    trainer.fit()
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    affinity_offsets = data_config['volume_config']['segmentation'][
        'affinity_offsets']

    # NOTE invert target is done in the multiscale loss
    loss = LossWrapper(criterion=SorensenDiceLoss(),
                       transforms=Compose(
                           MaskTransitionToIgnoreLabel(affinity_offsets),
                           RemoveSegmentationFromTarget()))

    scaling_factors = 3 * [(1, 3, 3)]
    multiscale_loss = MultiScaleLossMaxPool(loss,
                                            scaling_factors,
                                            invert_target=True,
                                            retain_segmentation=True)

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    # use multicut pipeline for validation
    # TODO fix nifty weighting schemes
    metric = ArandErrorFromSegmentationPipeline(
        local_affinity_multicut_from_wsdt2d(n_threads=10,
                                            weighting_scheme=None,
                                            time_limit=120),
        is_multiscale=True)
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(multiscale_loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations')).observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Пример #9
0
    smoothness = 0.001
    trainer = Trainer(model)

    trainer.build_criterion(LossWrapper(p0=p0, p1=p1))
    trainer.build_optimizer('Adam')  #, lr=0.0001)
    trainer.validate_every((1, 'epochs'))
    #trainer.save_every((4, 'epochs'))
    trainer.save_to_directory(SAVE_DIRECTORY)
    trainer.set_max_num_epochs(200)
    trainer.register_callback(
        SaveAtBestValidationScore(smoothness=smoothness, verbose=True))
    trainer.register_callback(
        AutoLR(factor=0.5,
               patience='1 epochs',
               monitor_while='validating',
               monitor='validation_loss',
               monitor_momentum=smoothness,
               consider_improvement_with_respect_to='previous',
               verbose=True))

    trainer.register_callback(TQDMProgressBar())

    # Bind loaders
    train_loader = torch.utils.data.DataLoader(dataset=bsd_train,
                                               num_workers=8)
    val_loader = torch.utils.data.DataLoader(dataset=bsd_val, num_workers=8)

    num_inputs = bsd_train.num_inputs()
    num_targets = bsd_train.num_targets()

    trainer.load()
Пример #10
0
    trainer = Trainer(model)
    trainer = trainer\
            .build_criterion('BCELoss') \
            .build_metric('CategoricalError') \
            .build_optimizer('Adam', lr=args.lr) \
            .validate_every((2, 'epochs')) \
            .save_every((5, 'epochs')) \
            .save_to_directory(weight_dir) \
            .set_max_num_epochs(10000) \
            .build_logger(logger, log_directory=logs_dir)

    if args.flr:
        trainer = trainer.register_callback(
            AutoLR(args.decey, (1, 'epochs'),
                   monitor_momentum=0.9,
                   monitor_while='validating',
                   consider_improvement_with_respect_to='best'))
    else:
        trainer = trainer.register_callback(
            AutoLR(0.9, (1, 'epochs'),
                   consider_improvement_with_respect_to='previous'))

    if args.init_model_path != '':
        init_trainer = Trainer(model)
        if torch.cuda.is_available():
            init_trainer = init_trainer.load(
                from_directory=args.init_model_path, best=True)
        else:
            init_trainer = init_trainer.load(
                from_directory=args.init_model_path,
                best=True,
Пример #11
0
def set_up_training(project_directory, config):

    # Load the model to train from the configuratuib file ('./config/train_config.yml')
    model_name = config.get('model_name')
    model = getattr(models, model_name)(**config.get('model_kwargs'))

    # Initialize the loss: we use the SorensenDiceLoss, which has the nice property
    # of being fairly robust for un-balanced targets
    criterion = SorensenDiceLoss()
    # Wrap the loss to apply additional transformations before the actual
    # loss is applied. Here, we apply the mask to the target
    # and invert the target (necessary for sorensen dice) during training.
    # In addition, we need to remove the segmentation from the target
    # during validation (we only keep the segmentation in the target during validation)
    loss_train = LossWrapper(criterion=criterion,
                             transforms=Compose(ApplyAndRemoveMask(),
                                                InvertTarget()))
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              ApplyAndRemoveMask(),
                                              InvertTarget()))

    # Build the validation metric: we validate by running connected components on
    # the affinities for several thresholds
    # metric = ArandErrorFromConnectedComponentsOnAffinities(thresholds=[.5, .6, .7, .8, .9],
    #                                                        invert_affinities=True)
    metric = ArandErrorFromConnectedComponents(thresholds=[.5, .6, .7, .8, .9],
                                               invert_input=True,
                                               average_input=True)

    logger.info("Building trainer.")
    smoothness = 0.95
    # Build the trainer object
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))
    # .register_callback(DumpHDF5Every(frequency='99 iterations',
    #                                  to_directory=os.path.join(project_directory, 'debug')))

    logger.info("Building logger.")
    # Build tensorboard logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations')).observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer