def copy_top_match(querydir, query, ranked_matches, match):
    topentry = ranked_matches[0]
    matchedimg = topentry[0]
    score = topentry[1]
    
    dup = "dup" + str(len(ranked_matches) == 1 or score == ranked_matches[1][1])
    
    qlat = float(query.split(',')[1])
    qlon = float(query.split(',')[2])
    clat = float(matchedimg.split(",")[0])
    clon = float(matchedimg.split(",")[1][0:-5])
    distance = info.distance(qlat, qlon, clat, clon)

    queryimgpath = os.path.join(querydir, query + '.pgm')
    queryoutpath = os.path.join(resultsdir, query + ';query;gt' + str(match)  + ';' + dup + ';' + matchedimg + ';' + str(score) + ';' + str(distance) + '.pgm')
    shutil.copyfile(queryimgpath, queryoutpath)
    for matchedimg, score in ranked_matches:
        if score != topentry[1]:
            break
        clat = float(matchedimg.split(",")[0])
        clon = float(matchedimg.split(",")[1][0:-5])
        distance = info.distance(qlat, qlon, clat, clon)
        matchimgpath = os.path.join(dbdump, '%s.jpg' % matchedimg)
        matchoutpath = os.path.join(resultsdir, query + ';match;gt' + str(match)  + ';' + dup + ';' + matchedimg + ';' + str(score) + ';' + str(distance) + '.jpg')
        shutil.copy(matchimgpath, matchoutpath)
Пример #2
0
def copy_top_match(querydir, query, ranked_matches, match):
    topentry = ranked_matches[0]
    matchedimg = topentry[0]
    score = topentry[1]

    dup = "dup" + str(
        len(ranked_matches) == 1 or score == ranked_matches[1][1])

    qlat = float(query.split(',')[1])
    qlon = float(query.split(',')[2])
    clat = float(matchedimg.split(",")[0])
    clon = float(matchedimg.split(",")[1][0:-5])
    distance = info.distance(qlat, qlon, clat, clon)

    queryimgpath = os.path.join(querydir, query + '.pgm')
    queryoutpath = os.path.join(
        resultsdir, query + ';query;gt' + str(match) + ';' + dup + ';' +
        matchedimg + ';' + str(score) + ';' + str(distance) + '.pgm')
    shutil.copyfile(queryimgpath, queryoutpath)
    for matchedimg, score in ranked_matches:
        if score != topentry[1]:
            break
        clat = float(matchedimg.split(",")[0])
        clon = float(matchedimg.split(",")[1][0:-5])
        distance = info.distance(qlat, qlon, clat, clon)
        matchimgpath = os.path.join(dbdump, '%s.jpg' % matchedimg)
        matchoutpath = os.path.join(
            resultsdir, query + ';match;gt' + str(match) + ';' + dup + ';' +
            matchedimg + ';' + str(score) + ';' + str(distance) + '.jpg')
        shutil.copy(matchimgpath, matchoutpath)
Пример #3
0
def lltom(lat1, lon1, lat2, lon2):
    """Returns lat2,lon2 relative to lat1,lon1 in meters.
     Does not handle wraparound at 360."""
    if lat1 == lat2 and lon1 == lon2:
        return [0, 0]
    dx = distance(lat1, lon1, lat2, lon1) * (-1 if lat2 < lat1 else 1)
    dy = distance(lat1, lon1, lat1, lon2) * (-1 if lon2 < lon1 else 1)
    return [dx, dy]
Пример #4
0
def generateCellCoords(lat, lon, len, distance):
#takes lat long as upper left corner and length as distance to go right and down 210 degrees
#distance is distance between cells
    coords = []
    candlat1 = lat
    candlon1 = lon
    while(info.distance(lat, lon, candlat1, candlon1) < len):
        candlat2, candlon2 = candlat1, candlon1
        while(info.distance(candlat1, candlon1, candlat2, candlon2) < len):
            coords.append((candlat2, candlon2))
            candlat2, candlon2 = em.moveLocation4(candlat2, candlon2, distance, 90)
        candlat1, candlon1 = em.moveLocation4(candlat1, candlon1, distance, 210)
    return coords
Пример #5
0
  def hasView(self, C, lat, lon, qlat, qlon, qyaw, thresh):
    dist = distance(lat, lon, qlat, qlon)
    rad = min(20, max(3, int(dist/10)))

    def similar(view):
      return distance(view.lat, view.lon, qlat, qlon) < thresh

    def yawof(view):
      return view.yaw

    views = list(self.getViews(C, lat, lon, rad))
#    print "dist is %d, rad is %d, nviews is %d" % (dist, rad, len(views))
    closeyaws = map(lambda (k,v): v, sorted([(distance(v.lat, v.lon, qlat, qlon), yawof(v)) for v in views]))[:10]
    norm = geom.compute_norm(closeyaws)

    return any([similar(v) for v in views]), norm
Пример #6
0
  def taggedcopy(self, points, image, correction=False):
    MIN_SIZE = 1
    draw = ImageDraw.Draw(image)
    def dist(p):
      return info.distance(p[0].lat, p[0].lon, self.lat, self.lon)
    points.sort(key=dist, reverse=True) # draw distant first
    if not correction:
      points = [(t,(d,p),1) for (t,(d,p)) in points]
    for tag, (dist, point), correction in points:
      color = self.colordist(dist, 30.0)
      size = int(300.0*correction/info.distance(tag.lat, tag.lon, self.lat, self.lon))
      fontPath = "/usr/share/fonts/truetype/ttf-dejavu/DejaVuSans-Bold.ttf"
      font = ImageFont.truetype(fontPath, max(size, MIN_SIZE))
      off_x = -size*2
      off_y = -size*(len(tag)+1)
      # start black container
      top_left = (point[0] + off_x - 3, point[1] + off_y - 1)
      w = 10
      for line in tag:
        w = max(w, draw.textsize(line, font)[0])
      bottom_right = (point[0] + off_x + w + 3, point[1] + off_y + max(size, MIN_SIZE)*len(tag) + 3)
      img = image.copy()
      draw2 = ImageDraw.Draw(img)
      draw2.rectangle([top_left, bottom_right], fill='#000')

      image = Image.blend(image, img, 0.75)
      draw = ImageDraw.Draw(image)
      # end black container
      draw.ellipse((point[0]-size/2,point[1]-size/2,point[0]+size/2,point[1]+size/2), fill=color)
      for line in tag:
        draw.text((point[0] + off_x, point[1] + off_y), line, fill=color, font=font)
        off_y += max(size, MIN_SIZE)
#      if dist:
#        INFO('mapping tag at %f meters error' % dist)
    return image
Пример #7
0
 def admit(match):
   line = match[0][:-8]
   lat, lon = getlatlonfromdbimagename(C, line)
   dist = info.distance(lat, lon, Q.query_lat, Q.query_lon)
   if dist < C.amb_cutoff + C.amb_padding:
     return True
   return False
def query2(querydir, querysurf, dbdir, mainOutputDir, nClosestCells, copytopmatch, params, copy_top_n_percell=0):
    lat, lon = info.getQuerySURFCoord(querysurf)
    closest_cells = util.getclosestcells(lat, lon, dbdir)
    assert dict(closest_cells)['37.8732916331,-122.268346029'] < 236 or dict(closest_cells)['37.8714489427,-122.272389514'] < 236 or dict(closest_cells)['37.8696062215,-122.273737308'] < 236
    built = [
        '37.8732916331,-122.268346029',
        '37.8714489427,-122.272389514',
        '37.8696062215,-122.273737308',
    ]
    closest_cells = filter(lambda c: c[0] in built, closest_cells)
    outputFilePaths = []
    cells_in_range = [(cell, dist) for cell, dist in closest_cells[0:nClosestCells] if dist < cellradius + ambiguity+matchdistance]
    latquery, lonquery = info.getQuerySURFCoord(querysurf)
    if verbosity > 0:
        print "checking query: {0} \t against {1} \t cells".format(querysurf, len(cells_in_range))
    for cell, dist in cells_in_range:
        latcell, loncell = cell.split(',')
        latcell = float(latcell)
        loncell = float(loncell)
        actualdist = info.distance(latquery, lonquery, latcell, loncell)
        if verbosity > 1:
            print "querying cell: {0}, distance: {1} with:{2}".format(cell, actualdist, querysurf)
        outputFilePath = os.path.join(mainOutputDir, querysurf + ',' + cell + ',' + str(actualdist)  + ".res")
        outputFilePaths.append(outputFilePath)
    # start query
    query.run_parallel(dbdir, [c for c,d in cells_in_range], querydir, querysurf, outputFilePaths, params)
    # end query
    for cell, dist in cells_in_range:
        latcell, loncell = cell.split(',')
        latcell = float(latcell)
        loncell = float(loncell)
        actualdist = info.distance(latquery, lonquery, latcell, loncell)
        outputFilePath = os.path.join(mainOutputDir, querysurf + ',' + cell + ',' + str(actualdist)  + ".res")
        if copy_top_n_percell > 0:
            outputDir = os.path.join(mainOutputDir, querysurf + ',' + cell + ',' + str(actualdist))
            copy_topn_results(os.path.join(dbdir, cell), outputDir, outputFilePath, 4)
#    combined = combine_until_dup(outputFilePaths, 1000)
    combined = combine_topn_votes(outputFilePaths, float('inf'))
#    combined = filter_in_range(combined, querysurf)
#    write_scores(querysurf, combined, "/media/data/combined")
    [g, y, r, b, o] = check_topn_img(querysurf, combined, topnresults)
    if copytopmatch:
        match = g or y or r or b or o
        copy_top_match(querydir, querysurf.split('surf.npy')[0], combined, match)
    return [g, y, r, b, o]
Пример #9
0
    def hasView(self, C, lat, lon, qlat, qlon, qyaw, thresh):
        dist = distance(lat, lon, qlat, qlon)
        rad = min(20, max(3, int(dist / 10)))

        def similar(view):
            return distance(view.lat, view.lon, qlat, qlon) < thresh

        def yawof(view):
            return view.yaw

        views = list(self.getViews(C, lat, lon, rad))
        #    print "dist is %d, rad is %d, nviews is %d" % (dist, rad, len(views))
        closeyaws = map(
            lambda (k, v): v,
            sorted([(distance(v.lat, v.lon, qlat, qlon), yawof(v))
                    for v in views]))[:10]
        norm = geom.compute_norm(closeyaws)

        return any([similar(v) for v in views]), norm
Пример #10
0
 def visualize_point_cloud(self, cloudfile, output):
   cloud = np.load(cloudfile).item()
   img = self.image.copy()
   pixels = img.load()
   for x,y in cloud:
     d = cloud[x,y]
     lat, lon = d['lat'], d['lon']
     pixels[x,y] = self.colordist(info.distance(lat, lon, self.lat, self.lon))
   img = Image.blend(img, self.image, 0.5)
   img.save(output, 'png')
Пример #11
0
def skew_location(C, Q):
    length = 2*C.ambiguity
    points = []
    corner = info.moveLocation(Q.sensor_lat, Q.sensor_lon, (2**.5)*C.ambiguity, -45)
    for i in range(length+1):
        row = info.moveLocation(corner[0], corner[1], i, 180)
        for j in range(length+1):
            point = info.moveLocation(row[0], row[1], j, 90)
            if info.distance(Q.sensor_lat, Q.sensor_lon, point[0], point[1]) <= C.ambiguity:
                points.append(point)
    return points
Пример #12
0
def filter_in_range(ranked_matches, querysurf):
    qlat, qlon = info.getQuerySURFCoord(querysurf)
    weighted_matches = []
    for matchedimg, score in ranked_matches:
        clat = float(matchedimg.split(",")[0])
        clon = float(matchedimg.split(",")[1][0:-5])
        distance = info.distance(qlat, qlon, clat, clon)
        if distance < ambiguity + matchdistance:
            weighted_matches.append((matchedimg, 2 * score))
    weighted_matches.sort(key=lambda x: x[1], reverse=True)
    return weighted_matches
Пример #13
0
def filter_in_range(ranked_matches, querysurf):
    qlat, qlon = info.getQuerySURFCoord(querysurf)
    weighted_matches = []
    for matchedimg, score in ranked_matches:
        clat = float(matchedimg.split(",")[0])
        clon = float(matchedimg.split(",")[1][0:-5])
        distance = info.distance(qlat, qlon, clat, clon)
        if distance < ambiguity+matchdistance:
            weighted_matches.append((matchedimg, 2 * score))
    weighted_matches.sort(key=lambda x: x[1], reverse=True)
    return weighted_matches
Пример #14
0
def getNumJPGInRange(lat, lon, inputDir, radius, files):
    """counts all images in inputDir within radius of given coordinate makes assumption about format of filename"""
    if os.path.exists(inputDir):
        count = 0
        for file in files:
            lat2, lon2 = info.getImgCoord(str(file))
            dist = info.distance(lat, lon, lat2, lon2)
            if(dist < radius):
                count+=1
        return count
    else:
        raise OSError("{p} does not exist.".format(p=inputDir))
Пример #15
0
def skew_location(querysift, radius):
    center = info.getQuerySIFTCoord(querysift)
    length = 2*radius
    points = []
    corner = info.moveLocation(center[0], center[1], (2**.5)*radius, -45)
    for i in range(length+1):
        row = info.moveLocation(corner[0], corner[1], i, 180)
        for j in range(length+1):
            point = info.moveLocation(row[0],row[1], j, 90)
            if info.distance(center[0],center[1], point[0], point[1]) <= radius:
                points.append(point)
    return points
Пример #16
0
 def select_frustum(self, lat, lon, yaw, fov=270, radius=100):
   contained = []
   for tag in self.tags:
     dist = info.distance(lat, lon, tag.lat, tag.lon)
     if dist > radius:
       continue
     v1 = (math.sin(math.radians(yaw)), math.cos(math.radians(yaw)))
     v2 = (tag.lon-lon, tag.lat-lat)/linalg.norm((tag.lon-lon, tag.lat-lat))
     degrees = math.acos(np.dot(v1,v2))*180/math.pi
     assert degrees > 0
     if degrees > fov/2:
       continue
     contained.append(tag)
   return contained
Пример #17
0
def copySIFTInRange(lat, lon, inputDir, outputDir, radius, files):
    """puts all sift files in inputDir within radius of given coordinate into outputDir.
    makes assumption about format of filename"""
    if not os.path.exists(outputDir):
        try:
            os.makedirs(outputDir)
        except Exception:
            print "Error making directory...quitting..."
            return
    for file in files:
        lat2, lon2 = info.getSIFTCoord(str(file))
        dist = info.distance(lat, lon, lat2, lon2)
        if(dist < radius):
            os.symlink(os.path.join(os.path.abspath(inputDir + '/'), file), os.path.join(outputDir + '/', file))
Пример #18
0
 def select_frustum(self, lat, lon, yaw, fov=270, radius=100):
     contained = []
     for tag in self.tags:
         dist = info.distance(lat, lon, tag.lat, tag.lon)
         if dist > radius:
             continue
         v1 = (math.sin(math.radians(yaw)), math.cos(math.radians(yaw)))
         v2 = (tag.lon - lon, tag.lat - lat) / linalg.norm(
             (tag.lon - lon, tag.lat - lat))
         degrees = math.acos(np.dot(v1, v2)) * 180 / math.pi
         assert degrees > 0
         if degrees > fov / 2:
             continue
         contained.append(tag)
     return contained
Пример #19
0
def getclosestcell(lat, lon, celldir):
    if not os.path.exists(celldir):
        return
    dirs = getdirs(celldir)
    closest_dist = float('inf')
    closest_cell = ''
    for dir in dirs:
        lat2, lon2 = dir.split(',')
        lat2 = float(lat2)
        lon2 = float(lon2)
        dist = info.distance(lat, lon, lat2, lon2)
        if  dist < closest_dist:
            closest_dist = dist
            closest_cell = dir
    return closest_cell, closest_dist
Пример #20
0
def getclosestcells(lat, lon, celldir):
    if celldir in dircache:
        dirs = dircache[celldir]
    else:
        if not os.path.exists(celldir):
            print "ERR: celldir does not exist: {0}".format(celldir)
            return []
        dirs = dircache[celldir] = getdirs(celldir)
    closest_cells = []
    for dir in dirs:
        lat2, lon2 = dir.split(',')
        lat2 = float(lat2)
        lon2 = float(lon2)
        dist = info.distance(lat, lon, lat2, lon2)
        closest_cells.append((dir, dist))
    closest_cells.sort(key=lambda x: x[1])
    return closest_cells
Пример #21
0
def norm_compatible(pt, viewpt, verbose=False):

    # no bearing: corner, middle of street, etc
    if pt.bearing is None:
        return True

    # really close up!
    if distance(pt.lat, pt.lon, viewpt.lat, viewpt.lon) < 20:
        return True

    yaw = getbearing(pt.lat, pt.lon, viewpt.lat, viewpt.lon)
    diff = anglediff(pt.bearing * pi / 180, yaw * pi / 180) * 180 / math.pi
    if verbose:
        print "Point", pt
        print "pt bearing", pt.bearing
        print "view bearing", yaw
        print "diff", diff
        print
    return diff < 85
Пример #22
0
    def filter_locally_significant(self, fgen, d0, m0, q, rev=False):
        T = 70000  # pts ABOVE threshold allowed
        R = 25.0  # max visibility distance
        NN = 10  # neighbors to consider

        flann = pyflann.FLANN()
        INFO("building flann index")
        q.flann_setup_index(flann, d0, m0, None)
        INFO("building 3d map")
        map3d = self.load_3dmap_for_cell(q.cellpath, d0, m0, q.infodir)
        INFO("begin filtering features")
        params = q.params.copy()
        params['num_neighbors'] = NN
        for offset, fchunk in fgen:
            fchunk_filtered = []
            arr = np.ndarray(len(fchunk), self.dtype)
            arr[:] = fchunk
            results, dists = flann.nn_index(arr['vec'], **params)
            # for each feature
            for _, (index_arr, dist_arr) in enumerate(zip(results, dists)):
                refpt = map3d[offset + _]
                # for each match of feature
                has_r = False
                ok = False
                for i, d in zip(index_arr, dist_arr):
                    pt = map3d[i]
                    r = distance(pt['lat'], pt['lon'], refpt['lat'],
                                 refpt['lon'])
                    if r > R:
                        has_r = True
                        if (not rev and d > T) or (rev and d < T):
                            ok = True
                            break
                if ok or not has_r:
                    fchunk_filtered.append(fchunk[_])
            print 'filter chunk %d/%d' % (len(fchunk_filtered), len(fchunk))
            yield fchunk_filtered
Пример #23
0
  def filter_locally_significant(self, fgen, d0, m0, q, rev=False):
    T = 70000 # pts ABOVE threshold allowed
    R = 25.0 # max visibility distance
    NN = 10 # neighbors to consider

    flann = pyflann.FLANN()
    INFO("building flann index")
    q.flann_setup_index(flann, d0, m0, None)
    INFO("building 3d map")
    map3d = self.load_3dmap_for_cell(q.cellpath, d0, m0, q.infodir)
    INFO("begin filtering features")
    params = q.params.copy()
    params['num_neighbors'] = NN
    for offset, fchunk in fgen:
      fchunk_filtered = []
      arr = np.ndarray(len(fchunk), self.dtype)
      arr[:] = fchunk
      results, dists = flann.nn_index(arr['vec'], **params)
      # for each feature
      for _, (index_arr, dist_arr) in enumerate(zip(results, dists)):
        refpt = map3d[offset + _]
        # for each match of feature
        has_r = False
        ok = False
        for i, d in zip(index_arr, dist_arr):
          pt = map3d[i]
          r = distance(pt['lat'], pt['lon'], refpt['lat'], refpt['lon'])
          if r > R:
            has_r = True
            if (not rev and d > T) or (rev and d < T):
              ok = True
              break
        if ok or not has_r:
          fchunk_filtered.append(fchunk[_])
      print 'filter chunk %d/%d' % (len(fchunk_filtered), len(fchunk))
      yield fchunk_filtered
Пример #24
0
 def distance_f(oloc):
   return info.distance(source.lat, source.lon, oloc['lat'], oloc['lon'])
Пример #25
0
 def similar(view):
     return distance(view.lat, view.lon, qlat, qlon) < thresh
Пример #26
0
 def xydistance(self, d2):
   x1, y1, z1 = self.lat, self.lon, self.alt
   x2, y2, z2 = d2['lat'], d2['lon'], d2['alt']
   xydist = info.distance(x1, y1, x2, y2)
   return xydist
Пример #27
0
 def distance_f(oloc):
     return info.distance(source.lat, source.lon, oloc['lat'],
                          oloc['lon'])
Пример #28
0
 def dist(p):
   return info.distance(p[0].lat, p[0].lon, self.lat, self.lon)
Пример #29
0
 def xydistance(self, d2):
     x1, y1, z1 = self.lat, self.lon, self.alt
     x2, y2, z2 = d2['lat'], d2['lon'], d2['alt']
     xydist = info.distance(x1, y1, x2, y2)
     return xydist
Пример #30
0
def query2(querydir,
           querysurf,
           dbdir,
           mainOutputDir,
           nClosestCells,
           copytopmatch,
           params,
           copy_top_n_percell=0):
    lat, lon = info.getQuerySURFCoord(querysurf)
    closest_cells = util.getclosestcells(lat, lon, dbdir)
    assert dict(closest_cells)['37.8732916331,-122.268346029'] < 236 or dict(
        closest_cells)['37.8714489427,-122.272389514'] < 236 or dict(
            closest_cells)['37.8696062215,-122.273737308'] < 236
    built = [
        '37.8732916331,-122.268346029',
        '37.8714489427,-122.272389514',
        '37.8696062215,-122.273737308',
    ]
    closest_cells = filter(lambda c: c[0] in built, closest_cells)
    outputFilePaths = []
    cells_in_range = [(cell, dist)
                      for cell, dist in closest_cells[0:nClosestCells]
                      if dist < cellradius + ambiguity + matchdistance]
    latquery, lonquery = info.getQuerySURFCoord(querysurf)
    if verbosity > 0:
        print "checking query: {0} \t against {1} \t cells".format(
            querysurf, len(cells_in_range))
    for cell, dist in cells_in_range:
        latcell, loncell = cell.split(',')
        latcell = float(latcell)
        loncell = float(loncell)
        actualdist = info.distance(latquery, lonquery, latcell, loncell)
        if verbosity > 1:
            print "querying cell: {0}, distance: {1} with:{2}".format(
                cell, actualdist, querysurf)
        outputFilePath = os.path.join(
            mainOutputDir,
            querysurf + ',' + cell + ',' + str(actualdist) + ".res")
        outputFilePaths.append(outputFilePath)
    # start query
    query.run_parallel(dbdir, [c for c, d in cells_in_range], querydir,
                       querysurf, outputFilePaths, params)
    # end query
    for cell, dist in cells_in_range:
        latcell, loncell = cell.split(',')
        latcell = float(latcell)
        loncell = float(loncell)
        actualdist = info.distance(latquery, lonquery, latcell, loncell)
        outputFilePath = os.path.join(
            mainOutputDir,
            querysurf + ',' + cell + ',' + str(actualdist) + ".res")
        if copy_top_n_percell > 0:
            outputDir = os.path.join(
                mainOutputDir, querysurf + ',' + cell + ',' + str(actualdist))
            copy_topn_results(os.path.join(dbdir, cell), outputDir,
                              outputFilePath, 4)


#    combined = combine_until_dup(outputFilePaths, 1000)
    combined = combine_topn_votes(outputFilePaths, float('inf'))
    #    combined = filter_in_range(combined, querysurf)
    #    write_scores(querysurf, combined, "/media/data/combined")
    [g, y, r, b, o] = check_topn_img(querysurf, combined, topnresults)
    if copytopmatch:
        match = g or y or r or b or o
        copy_top_match(querydir,
                       querysurf.split('surf.npy')[0], combined, match)
    return [g, y, r, b, o]
Пример #31
0
from android import AndroidReader
import numpy as np
from info import distance

f = open('/media/DATAPART2/query5horizontal/gtLatLonNormYaw.txt')
m = {}
for line in f:
    data = line.split()
    name = data[0]
    lat, lon = float(data[1]), float(data[2])
    m[name] = (lat, lon)

dss = []
for a in AndroidReader('/media/DATAPART2/query5horizontal'):
    if a.name in m:
        d = m[a.name]
        ds = distance(a.lat, a.lon, d[0], d[1])
        ds = float(ds)
        dss.append(ds)
        dss.append(-ds)
        print ds
    else:
        print 'skipped', a.name, a.lat, a.lon
print 'mean', np.mean(dss)
print 'var', np.var(dss)
Пример #32
0
 def similar(view):
   return distance(view.lat, view.lon, qlat, qlon) < thresh
Пример #33
0
def match(C, Q):
    if C.shuffle_cells:
      C._dbdir = None
    if C.override_cells:
      INFO('override cells')
      cells_in_range = [(c,0) for c in C.override_cells]
    else:
      # compute closest cells
      closest_cells = util.getclosestcells(Q.query_lat, Q.query_lon, C.dbdir)
      if C.restrict_cells:
        closest_cells = filter(lambda c: c[0] in C.restrict_cells, closest_cells)
      cells_in_range = [(cell, dist)
        for cell, dist in closest_cells[0:C.ncells]
          if dist < C.cellradius + C.ambiguity + C.matchdistance]
    INFO('Using %d cells' % len(cells_in_range))
    if C.shuffle_cells:
      import reader
      sr = reader.get_reader('sift')
      supercell = sr.get_supercelldir(
        C.dbdir,
        [c for (c,d) in cells_in_range],
        C.overlap_method)
      C._dbdir = supercell

    if not cells_in_range:
        raise LocationOutOfRangeError

    # cache for fuzz runs
    if C.cacheEnable:
        key = derive_key(C, cells_in_range, Q.siftname)
        if key in cache:
            print 'cache hit'
            return cache[key]
        else:
            print 'cache miss'

    # compute output file paths for the cells

    cellpath = [c for c,d in cells_in_range]
    listofimages = []
    if C.one_big_cell:
      INFO('Using 1 big cell (%d union)' % len(cells_in_range))
      outputFilePaths = [os.path.join(C.matchdir, Q.siftname + ',' + getcellid(cellpath) + ".res")]
      #listofimages = lexiconrank.addImagetoList(listofimages, C.dbdir + cellpath)
      cellpath = [cellpath]
    else:
      outputFilePaths = []
      for cell, dist in cells_in_range:
          if ',' in cell:
            latcell, loncell = cell.split(',')
            latcell = float(latcell)
            loncell = float(loncell)
          else:
            latcell, loncell = 0,0
          actualdist = info.distance(Q.query_lat, Q.query_lon, latcell, loncell)
          outputFilePath = os.path.join(C.matchdir, Q.siftname + ',' + cell + ',' + str(actualdist)  + ".res")
          outputFilePaths.append(outputFilePath)
          #listofimages = lexiconrank.addImagetoList(listofimages, C.dbdir + cell)

    # start query
    query.run_parallel(C, Q, cellpath, outputFilePaths, estimate_threads_avail())
    #d, lexiconmatchedimg = lexiconrank.returnTopMatch_random(C.dbdump, listofimages, Q.jpgpath)

    # combine results
    if C.spatial_comb:
      comb_matches = corr.combine_spatial(outputFilePaths)
    else:
      print outputFilePaths
      comb_matches = corr.combine_matches(outputFilePaths)

    #geometric consistency reranking
    if C.disable_filter_step:
      imm = condense2(sorted(comb_matches.iteritems(), key=lambda x: len(x[1]), reverse=True))
      rsc_ok = True
    else:
      imm, rsc_ok = rerank_ransac(comb_matches, C, Q)

    if C.weight_by_coverage:
      #print 1
      ranked = weight_by_coverage(C, Q, imm)
    elif C.weight_by_distance:
      #print 2
      ranked = weight_by_distance(C, Q, imm)
    else:
      #print 3
      ranked = distance_sort(C, Q, imm)

    # top 1
    stats = check_topn_img(C, Q, ranked, 1)

    # return statistics and top result
    matchedimg = ranked[0][0]
    matches = comb_matches[matchedimg + 'sift.txt']
    if C.cacheEnable:
        cache[key] = (stats, matchedimg, matches, ranked)
    if C.match_callback:
        C.match_callback(C, Q, stats, matchedimg, ranked, cells_in_range, rsc_ok)

    # compute homography and draw images maybe
    if MultiprocessExecution.pool:
      MultiprocessExecution.pool.apply_async(compute_hom, [C.pickleable(), Q, ranked, comb_matches])
    else:
      compute_hom(C, Q, ranked, comb_matches)

    ### Query Pose Estimation ###
    match = any(check_img(C, Q, ranked[0]))
    if (C.solve_pose and match and Q.name not in C.pose_remove) or C.pose_param['solve_bad']:
        #computePose.draw_dbimage(C, Q, matchedimg, match)
        if MultiprocessExecution.pool:
            MultiprocessExecution.pool.apply_async(computePose.estimate_pose, [C.pickleable(), Q, matchedimg, match])
        else:
            computePose.estimate_pose(C, Q, matchedimg, match)

    # done
    return stats, matchedimg, matches, ranked
Пример #34
0
 def extract_key(match):
   line = match[0]
   lat, lon = getlatlonfromdbimagename(C, line)
   return (match[1], -info.distance(lat, lon, Q.query_lat, Q.query_lon))
Пример #35
0
def distance3d6(x1, y1, z1, x2, y2, z2):
    xydist = distance(x1, y1, x2, y2)
    vert = abs(z1 - z2)
    return sqrt(xydist**2 + vert**2)
Пример #36
0
 def contribution(target, contributer):
   lat, lon = getlatlonfromdbimagename(C, target[0])
   lat2, lon2 = getlatlonfromdbimagename(C, contributer[0])
   dist = info.distance(lat, lon, lat2, lon2)
   return contrib_function(contributer) * weighting_function(dist)