Пример #1
0
    def predict(self):
        import input
        import model

        input = input.load()
        model_pred = model.create(input)
        model_pred.predict(input)
Пример #2
0
    def goTrain(self):
        import input
        import model

        input = input.load()
        model_train = model.create(input)
        model_train.fit(input)

        if not conf.path_model is None:
            model_train.save(conf.path_model)
Пример #3
0
def main():
    args = parseCommandLineArguments()

    level = INFO
    if args.debug: level = 0
    elif args.verbose: level = DEBUG
    elif args.quiet: level = WARNING
    initializeLog(level)

    inputFile, reductionFile, chemkinFile, spcDict = args.requiredFiles[-4:]

    for f in [inputFile, reductionFile, chemkinFile, spcDict]:
        assert os.path.isfile(f), 'Could not find {}'.format(f)

    inputDirectory = os.path.abspath(os.path.dirname(inputFile))
    output_directory = inputDirectory

    rmg, targets, error = load(inputFile, reductionFile, chemkinFile, spcDict)
    logger.info('Allowed error in target observables: {0:.0f}%'.format(error *
                                                                       100))

    reactionModel = rmg.reactionModel
    initialize(rmg.outputDirectory, reactionModel.core.reactions)

    atol, rtol = rmg.absoluteTolerance, rmg.relativeTolerance
    index = 0
    reactionSystem = rmg.reactionSystems[index]

    #compute original target observables
    observables = computeObservables(targets, reactionModel, reactionSystem, \
     rmg.absoluteTolerance, rmg.relativeTolerance)

    logger.info('Observables of original model:')
    for target, observable in zip(targets, observables):
        logger.info('{}: {:.2f}%'.format(target, observable * 100))

    # optimize reduction tolerance
    tol, importantReactions = optimize(targets, reactionModel, rmg, index,
                                       error, observables)
    logger.info('Optimized tolerance: {:.0E}'.format(10**tol))
    logger.info('Number of reactions in optimized reduced model : {}'.format(
        len(importantReactions)))

    # plug the important reactions into the RMG object and write:
    rmg.reactionModel.core.reactions = importantReactions
    writeModel(rmg)
Пример #4
0
def main():
    args = parseCommandLineArguments()

    level = INFO
    if args.debug: level = 0
    elif args.verbose: level = DEBUG
    elif args.quiet: level = WARNING
    initializeLog(level)

    inputFile, reductionFile, chemkinFile, spcDict = args.requiredFiles[-4:]

    for f in [inputFile, reductionFile, chemkinFile, spcDict]:
        assert os.path.isfile(f), 'Could not find {}'.format(f)

    inputDirectory = os.path.abspath(os.path.dirname(inputFile))
    output_directory = inputDirectory

    rmg, targets, error = load(inputFile, reductionFile, chemkinFile, spcDict)
    logger.info('Allowed error in target observables: {0:.0f}%'.format(error * 100))

    reactionModel = rmg.reactionModel
    initialize(rmg.outputDirectory, reactionModel.core.reactions)

    atol, rtol = rmg.absoluteTolerance, rmg.relativeTolerance
    index = 0
    reactionSystem = rmg.reactionSystems[index]    
    
    #compute original target observables
    observables = computeObservables(targets, reactionModel, reactionSystem, \
     rmg.absoluteTolerance, rmg.relativeTolerance)

    logger.info('Observables of original model:')
    for target, observable in zip(targets, observables):
        logger.info('{}: {:.2f}%'.format(target, observable * 100))

    # optimize reduction tolerance
    tol, importantReactions = optimize(targets, reactionModel, rmg, index, error, observables)
    logger.info('Optimized tolerance: {:.0E}'.format(10**tol))
    logger.info('Number of reactions in optimized reduced model : {}'.format(len(importantReactions)))

    # plug the important reactions into the RMG object and write:
    rmg.reactionModel.core.reactions = importantReactions
    writeModel(rmg)
Пример #5
0
    def __parse_input(self, in_file):
        from input import load
        data = load(in_file)

        options = data[input.OPTIONS]

        if options.flow_unit in US_UNITS:
            self.units = UnitsUS()  #TODO make proper units system
        else:
            self.units = UnitsSI()  #TODO implement UnitsSI

        #init curves
        self.curves = {}
        for c in data[input.CURVES]:
            self.curves[c.ID] = None

        for id in self.curves.keys():
            self.curves[id] = Curve(data[input.CURVES], id)

        self.__prepare_nodes(data)
        self.__prepare_links(data)
Пример #6
0
    def __parse_input(self, in_file):
        from input import load
        data = load(in_file)

        options = data[input.OPTIONS]

        if options.flow_unit in US_UNITS:
            self.units = UnitsUS() #TODO make proper units system
        else:
            self.units = UnitsSI() #TODO implement UnitsSI

        #init curves
        self.curves = {}
        for c in data[input.CURVES]:
            self.curves[c.ID] = None

        for id in self.curves.keys():
            self.curves[id] = Curve(data[input.CURVES], id)

        self.__prepare_nodes(data)
        self.__prepare_links(data)