Пример #1
0
def train_teacher(FLAGS, dataset, nb_teachers, teacher_id):
  """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
  # If working directories do not exist, create them
  assert input.create_dir_if_needed(FLAGS.data_dir)
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Load the dataset
  if dataset == 'svhn':
    train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
  elif dataset == 'cifar10':
    train_data, train_labels, test_data, test_labels = input.ld_cifar10()
  elif dataset == 'mnist':
    train_data, train_labels, test_data, test_labels = input.ld_mnist()
  else:
    print("Check value of dataset flag")
    return False
  if FLAGS.cov_shift == True:
    teacher_file_name = FLAGS.data + 'PCA_teacher' + FLAGS.dataset + '.pkl'
    student_file_name = FLAGS.data + 'PCA_student' + FLAGS.dataset + '.pkl'
    f = open(teacher_file_name, 'rb')
    train_data = pickle.load(f)
    f = open(student_file_name, 'rb')
    test_data = pickle.load(f)
  # Retrieve subset of data for this teacher
  data, labels = input.partition_dataset(train_data,
                                         train_labels,
                                         nb_teachers,
                                         teacher_id)

  print("Length of training data: " + str(len(labels)))

  # Define teacher checkpoint filename and full path
  if FLAGS.deeper:
    filename = str(nb_teachers) + 'pca_teachers_' + str(teacher_id) + '_deep.ckpt'
  else:
    filename = str(nb_teachers) + 'pca_teachers_' + str(teacher_id) + '.ckpt'
  ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

  # Perform teacher training
  assert deep_cnn.train(data, labels, ckpt_path)

  # Append final step value to checkpoint for evaluation
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Retrieve teacher probability estimates on the test data
  teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(teacher_preds, test_labels)
  print('Precision of teacher after training: ' + str(precision))

  return True
def train_teacher(dataset, nb_teachers, teacher_id):
  """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
  # If working directories do not exist, create them
  assert input.create_dir_if_needed(FLAGS.data_dir)
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Load the dataset
  if dataset == 'svhn':
    train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
  elif dataset == 'cifar10':
    train_data, train_labels, test_data, test_labels = input.ld_cifar10()
  elif dataset == 'mnist':
    train_data, train_labels, test_data, test_labels = input.ld_mnist()
  else:
    print("Check value of dataset flag")
    return False
    
  # Retrieve subset of data for this teacher
  data, labels = input.partition_dataset(train_data, 
                                         train_labels, 
                                         nb_teachers, 
                                         teacher_id)

  print("Length of training data: " + str(len(labels)))

  # Define teacher checkpoint filename and full path
  if FLAGS.deeper:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt'
  else:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
  ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

  # Perform teacher training
  assert deep_cnn.train(data, labels, ckpt_path)

  # Append final step value to checkpoint for evaluation
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Retrieve teacher probability estimates on the test data
  teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(teacher_preds, test_labels)
  print('Precision of teacher after training: ' + str(precision))

  return True
Пример #3
0
def train_teacher(dataset, nb_teachers, teacher_id):
    """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
    # If working directories do not exist, create them
    assert input.create_dir_if_needed(FLAGS.data_dir)
    assert input.create_dir_if_needed(FLAGS.train_dir)
    print("teacher {}:".format(teacher_id))
    # Load the dataset
    if dataset == 'svhn':
        train_data, train_labels, test_data, test_labels = input.ld_svhn(
            extended=True)
    elif dataset == 'cifar10':
        train_data, train_labels, test_data, test_labels = input.ld_cifar10()
    elif dataset == 'mnist':
        train_data, train_labels, test_data, test_labels = input.ld_mnist()
    else:
        print("Check value of dataset flag")
        return False

    path = os.path.abspath('.')

    path1 = path + '\\plts_nodisturb\\'

    # 对标签进行干扰
    import copy
    train_labels1 = copy.copy(train_labels)
    train_labels2 = disturb(train_labels, 0.1)
    disturb(test_labels, 0.1)
    #path1 = path + '\\plts_withdisturb\\'

    # Retrieve subset of data for this teacher
    #干扰前
    data, labels = input.partition_dataset(train_data, train_labels,
                                           nb_teachers, teacher_id)

    from pca import K_S
    import operator
    print(operator.eq(train_labels1, train_labels2))
    print("干扰前: ", K_S.tst_norm(train_labels1))
    print("干扰后: ", K_S.tst_norm(train_labels2))
    print(K_S.tst_samp(train_labels1, train_labels2))

    print("Length of training data: " + str(len(labels)))

    # Define teacher checkpoint filename and full path
    if FLAGS.deeper:
        filename = str(nb_teachers) + '_teachers_' + str(
            teacher_id) + '_deep.ckpt'
    else:
        filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

    # Perform teacher training
    losses = deep_cnn.train(data, labels, ckpt_path)

    # Append final step value to checkpoint for evaluation
    ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

    # Retrieve teacher probability estimates on the test data
    teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

    # Compute teacher accuracy
    precision = metrics.accuracy(teacher_preds, test_labels)
    print('Precision of teacher after training: ' + str(precision))
    print("each n step loss: ", losses)

    #x = list(range(1, len(losses)+1))
    #plt.plot(x, losses, 'bo-', markersize=20)
    #plt.savefig(path1 + 'loss' + str(teacher_id) + '.jpg')
    #plt.show()
    #print("x: ",x)
    #print("loss: ", losses)

    return True