Пример #1
0
    return tf.reduce_mean(loss)


if FLAGS.dataset == 'train':
    print('training on train set')
    MAX_STEPS = FLAGS.max_epoches * FLAGS.train_samples // FLAGS.batch_size
    train_data = input_data.read_train_data(rgb_mean=FLAGS.rgb_mean,
                                            crop_height=FLAGS.crop_height,
                                            crop_width=FLAGS.crop_width,
                                            classes=FLAGS.classes,
                                            ignore_label=FLAGS.ignore_label,
                                            scales=FLAGS.scales)
    val_data = input_data.read_val_data(rgb_mean=FLAGS.rgb_mean,
                                        crop_height=FLAGS.crop_height,
                                        crop_width=FLAGS.crop_width,
                                        classes=FLAGS.classes,
                                        ignore_label=FLAGS.ignore_label,
                                        scales=FLAGS.scales)
elif FLAGS.dataset == 'trainval':
    print('training on trainval set')
    MAX_STEPS = FLAGS.max_epoches * FLAGS.trainval_samples // FLAGS.batch_size
    trainval_data = input_data.read_trainval_data(
        rgb_mean=FLAGS.rgb_mean,
        crop_height=FLAGS.crop_height,
        crop_width=FLAGS.crop_width,
        classes=FLAGS.classes,
        ignore_label=FLAGS.ignore_label,
        scales=FLAGS.scales)
else:
    raise Exception('train or trainval is needed')
Пример #2
0
initial_lr_slow = 1e-5
end_lr_slow = 1e-6
decay_steps_slow = 30000


flags.DEFINE_integer('output_stride', 16, 'output stride used in the resnet model')

if FLAGS.output_stride == 16:
    MAX_STEPS = MAX_STEPS_FAST
    initial_lr = initial_lr_fast
    end_lr = end_lr_fast
    decay_steps = decay_steps_fast
    BATCH_SIZE = BATCH_SIZE_OS_16
    train_data = input_data.read_train_data()
    val_data = input_data.read_val_data()
elif FLAGS.output_stride == 8:
    MAX_STEPS = MAX_STEPS_SLOW
    initial_lr = initial_lr_slow
    end_lr = end_lr_slow
    decay_steps = decay_steps_slow
    BATCH_SIZE = BATCH_SIZE_OS_8
    train_data = input_data.read_train_raw_data()
    val_data = input_data.read_val_data()


# for saved path
saved_ckpt_path = './checkpoint/'
saved_summary_train_path = './summary/train/'
saved_summary_test_path = './summary/test/'