wd1_hist = tf.histogram_summary("weights dense 1", W_fc1) wd2_hist = tf.histogram_summary("weights dense 2", W_fc2) bc1_hist = tf.histogram_summary("biases conv 1", b_conv1) bc2_hist = tf.histogram_summary("biases conv 2", b_conv2) bd1_hist = tf.histogram_summary("biases dense 1", b_fc1) bd2_hist = tf.histogram_summary("biases dense 2", b_fc2) y_hist = tf.histogram_summary("predictions", y) ce_summ = tf.scalar_summary("cost", cross_entropy) accuracy_summary = tf.scalar_summary("accuracy", accuracy) merged = tf.merge_all_summaries() with tf.Session() as sess: sess.run(tf.initialize_all_variables()) writer = tf.train.SummaryWriter("/tmp/mnist_logs", sess.graph) for i in range(15000+1): batch = mnist.next_batch(50) if i % 100 == 0: print('[Step', str(i) + '] TRAIN error:', 1-accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), '(Crossentropy:', cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}),')') result = sess.run([merged, accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.}) summary_str = result[0] acc = result[1] writer.add_summary(summary_str, i) if i % 1000 == 0: batch = mnist.next_test_batch(600) print('TEST error:', 1-accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), '(Crossentropy:', cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}),')') train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: keep_prob_}) # save the model save_path = saver.save(sess, "/tmp/mnist_statefarm.ckpt")
out_hist = tf.histogram_summary("weights output", W_fc8) bc1_hist = tf.histogram_summary("biases conv 1", b_conv1) bc2_hist = tf.histogram_summary("biases conv 2", b_conv2) bc3_hist = tf.histogram_summary("biases conv 3", b_conv3) bc4_hist = tf.histogram_summary("biases conv 4", b_conv4) bc5_hist = tf.histogram_summary("biases conv 5", b_conv5) y_hist = tf.histogram_summary("predictions", y) ce_summ = tf.scalar_summary("cost", cross_entropy) accuracy_summary = tf.scalar_summary("accuracy", accuracy) merged = tf.merge_all_summaries() with tf.Session() as sess: sess.run(tf.initialize_all_variables()) writer = tf.train.SummaryWriter("/tmp/alexnet_logs", sess.graph) for i in range(15000+1): batch = mnist.next_batch(batch_size) if i % 100 == 0: print('[Step', str(i) + '] TRAIN error:', 1-accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), '(Crossentropy:', cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), ')') result = sess.run([merged, accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.}) summary_str = result[0] acc = result[1] writer.add_summary(summary_str, i) if i % 1000 == 0: batch = mnist.next_test_batch(batch_size) print('TEST error:', 1-accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), '(Crossentropy:', cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}), ')') train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print 'Making predictions on test set...' predictions_ = np.empty((0, 10))