Пример #1
0
def test_cifar10():
    data_train, data_test = __prepare_datasets()
    model = __prepare_model(data_train, data_test)

    print("---Evaluation---")
    loss, acc = model.evaluate(*data_test)

    print(f"loss={loss}, acc={acc}")

    print("---Fault Injection---")
    pixels = np.array(
        [
            PixelFault(5, 5, 0, 0, 0),
            PixelFault(6, 6, 0, 0, 0),
            PixelFault(7, 7, 0, 0, 0),
        ],
        dtype=object,
    )

    faulted_model = InputTensorFI.build_faulted_model(
        model,
        fi_layers=[
            PixelFiLayerTF(pixels, dtype=tf.uint8),
        ],
    )

    print("---Evaluation with FI---")
    logdir = "logs/compile/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
    loss, acc = faulted_model.evaluate(
        *data_test, callbacks=[tensorboard_callback]
    )
    print(f"loss={loss}, acc={acc}")
Пример #2
0
def test_perturb_image():
    pixels = np.array(
        [PixelFault(16, 16, 255, 255, 0),
         PixelFault(5, 5, 255, 255, 0)],
        dtype=object,
    )
    (_, _), (x_test, _) = cifar10.load_data()
    image = x_test[0]
    perturb_image = utils.build_perturb_image(pixels)

    images_pertubed = perturb_image(image)

    assert np.array_equal(images_pertubed[16, 16], np.array((255, 255, 0)))
    assert np.array_equal(images_pertubed[5, 5], np.array((255, 255, 0)))
Пример #3
0
def test_cifar10_one():
    data_train, data_test = __prepare_datasets()
    model = __prepare_model(data_train, data_test)

    print("---Evaluation---")
    image_id = 541
    x_test, y_test = data_test
    x = x_test[image_id]
    y_true = y_test[image_id]
    y_true_index = np.argmax(y_true)

    result = model.predict(np.array([x]))[0]
    result_index = np.argmax(result)

    print(f"result={result}")
    print(f"result_index={result_index}")
    print(f"y_true={y_true}")
    print(f"y_true_index={y_true_index}")
    print(f"result[y_true_index]={result[y_true_index]}")

    print("---Fault Injection---")
    pixels = np.array(
        [
            PixelFault(5, 5, 0, 0, 0),
            PixelFault(6, 6, 0, 0, 0),
            PixelFault(7, 7, 0, 0, 0),
        ],
        dtype=object,
    )

    faulted_model = InputTensorFI.build_faulted_model(
        model,
        fi_layers=[
            PixelFiLayerTF(pixels, dtype=tf.uint8),
        ],
    )

    print("---Evaluation with FI---")
    result = faulted_model.predict(np.array([x_test[image_id]]))[0]
    result_index = np.argmax(result)
    print(f"result={result}")
    print(f"result_index={result_index}")
    print(f"y_true={y_true}")
    print(f"y_true_index={y_true_index}")
    print(f"result[y_true_index]={result[y_true_index]}")

    # Plot
    perturbated_image = build_perturb_image(pixels)(x_test[image_id])
    utils.plot_image(perturbated_image)
Пример #4
0
def corner_search(
    image_id: int,
    pixels: np.ndarray,
    data_test: np.ndarray,
    model: tf.keras.Model,
) -> Iterable[Tuple[np.ndarray, np.ndarray, PixelFault]]:
    x_test, y_test = data_test

    y_true = y_test[image_id]
    y_true_index = np.argmax(y_true)

    for pixel in pixels:
        corner_pixels = [
            PixelFault(pixel.x, pixel.y, r, g, b) for r, g, b in CORNERS
        ]

        x_fakes = np.array([
            build_perturb_image([corner_pixel])(x_test[image_id])
            for corner_pixel in corner_pixels
        ])
        y_preds = model.predict(x_fakes)

        for x_fake, y_pred, corner_pixel in zip(
                x_fakes,
                y_preds,
                corner_pixels,
        ):
            y_pred_index = np.argmax(y_pred)
            if y_true_index != y_pred_index:
                yield x_fake, y_pred, corner_pixel
Пример #5
0
def test_PixelFiLayer():
    pixels = np.array(
        [PixelFault(16, 16, 255, 255, 0),
         PixelFault(5, 5, 255, 255, 0)],
        dtype=object,
    )
    (_, _), (x_test, _) = cifar10.load_data()
    image = x_test[0]

    model = tf.keras.Sequential(layers=[
        tf.keras.layers.Input(dtype=tf.uint8, shape=(32, 32, 3)),
        layers.PixelFiLayer(pixels),
    ])

    image_perturbed: np.ndarray = model.predict(np.array([image]))[0]

    assert np.array_equal(image_perturbed[16, 16], np.array((255, 255, 0)))
    assert np.array_equal(image_perturbed[5, 5], np.array((255, 255, 0)))
def _look_for_pixels(
    image_id: int,
    data_test: np.ndarray,
    model: tf.keras.Model,
):
    x_test, y_test = data_test
    x = x_test[image_id]
    y_true = y_test[image_id]
    y_true_index = np.argmax(y_true)
    pixels = attack(
        x,
        y_true_index,
        model,
        pixel_count=1,  # Number of pixels to attack
        verbose=True,
    ).astype(np.uint8)

    # Convert [x_0, y_0, r_0, g_0, b_0, x_1, ...]
    # to [pixel_fault_0, pixel_fault_1, ...]
    return np.array([PixelFault(*pixels[0:5]) for i in range(len(pixels) // 5)])