Пример #1
0
def test_symplectic_hecke_insertion():
    w = (4, 2, 6, 1, 7, 5, 3, 4, 2, 1, 3, 2)
    i = (1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 9)

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w)

    p = Tableau({
        (1, 1): 2,
        (1, 2): 3,
        (1, 3): 4,
        (1, 4): 5,
        (1, 5): 6,
        (1, 6): 7,
        (2, 2): 4,
        (2, 3): 5,
        (2, 4): 6,
        (2, 5): 7,
        (3, 3): 6,
        (3, 4): 7,
    })
    q = Tableau({
        (1, 1): 1,
        (1, 2): -2,
        (1, 3): 3,
        (1, 4): -4,
        (1, 5): 5,
        (1, 6): -10,
        (2, 2): 6,
        (2, 3): -7,
        (2, 4): -9,
        (2, 5): -12,
        (3, 3): 8,
        (3, 4): -11,
    })
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(
        p, q) == (w, tuple(range(1, 13)))

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w, i)

    q = Tableau({
        (1, 1): 1,
        (1, 2): -2,
        (1, 3): 2,
        (1, 4): -3,
        (1, 5): 3,
        (1, 6): -8,
        (2, 2): 4,
        (2, 3): -5,
        (2, 4): -6,
        (2, 5): -9,
        (3, 3): 5,
        (3, 4): -8,
    })
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p, q) == (w, i)
Пример #2
0
 def backward(self):
     if not self.is_symplectic:
         return lambda x, y: InsertionAlgorithm.inverse_orthogonal_hecke(
             x, y, self.multisetvalued)
     else:
         return lambda x, y: InsertionAlgorithm.inverse_symplectic_hecke(
             x, y, self.multisetvalued)
Пример #3
0
def test_symplectic_hecke_insertion_setvalued():
    w = (2, 2, 4, 3)
    i = (1, 1, 1, 4)

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w)

    p = Tableau({(1, 1): 2, (1, 2): 3, (2, 2): 4})
    q = Tableau({(1, 1): (1, 2), (1, 2): 3, (2, 2): 4})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p,
                                                       q) == (w, (1, 2, 3, 4))

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w, i)

    q = Tableau({(1, 1): (1, 1), (1, 2): 1, (2, 2): 4})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p, q) == (w, i)

    i = (1, 2, 3, 3)
    insertion, recording = InsertionAlgorithm.symplectic_hecke(w, i, False)

    q = Tableau({(1, 1): (1, 2), (1, 2): -3, (2, 2): 3})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p, q, False) == (w, i)

    w = (4, 2, 2, 3)
    i = (2, 4, 4, 4)

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w)

    p = Tableau({(1, 1): 2, (1, 2): 3, (2, 2): 4})
    q = Tableau({(1, 1): 1, (1, 2): (-3, -2), (2, 2): 4})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p,
                                                       q) == (w, (1, 2, 3, 4))

    insertion, recording = InsertionAlgorithm.symplectic_hecke(w, i)

    q = Tableau({(1, 1): 2, (1, 2): (-4, -4), (2, 2): 4})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p, q) == (w, i)

    i = (1, 1, 2, 3)
    insertion, recording = InsertionAlgorithm.symplectic_hecke(w, i, False)

    q = Tableau({(1, 1): 1, (1, 2): (1, 2), (2, 2): 3})
    assert insertion == p
    assert recording == q
    assert InsertionAlgorithm.inverse_symplectic_hecke(p, q, False) == (w, i)