def comp_angle(blob, render, verbose): AveB = int(aveB * blob.rdn) if render: # don't render small blobs if blob.A < 100: render = False spliced_layers = [] # to extend root_blob sublayers # root fork is frame_blobs or comp_r ext_dert__, ext_mask__ = extend_dert( blob) # dert__ boundaries += 1, for cross-comp in larger kernels if -blob.M > AveB: # comp_a fork, replace with borrow_M if known blob.rng = 0 blob.f_comp_a = 1 adert__, mask__ = comp_a(ext_dert__, ext_mask__) # compute abs ma, no indep eval if verbose: print('\na fork\n') blob.prior_forks.extend('a') if mask__.shape[0] > 2 and mask__.shape[ 1] > 2 and False in mask__: # min size in y and x, least one dert in dert__ sign__ = ( -adert__[3] * adert__[9] ) > ave * pcoef # -m * ma: variable value of comp_slice_, no ave_ma in comp_a cluster_sub_eval( blob, adert__, sign__, mask__, render, verbose) # forms sub_blobs of fork p sign in unmasked area spliced_layers = [ spliced_layers + sublayers for spliced_layers, sublayers in zip_longest(spliced_layers, blob.sublayers, fillvalue=[]) ] return spliced_layers
def intra_blob( blob, **kwargs ): # slice_blob or recursive input rng+ | angle cross-comp within input blob Ave = int(ave * blob.rdn) AveB = int(aveB * blob.rdn) verbose = kwargs.get('verbose') if kwargs.get('render') is not None: # don't render small blobs if blob.A < 100: kwargs['render'] = False spliced_layers = [] # to extend root_blob sub_layers # root fork is frame_blobs or comp_r ext_dert__, ext_mask__ = extend_dert( blob) # dert__ boundaries += 1, for cross-comp in larger kernels if -blob.M > AveB: # comp_a fork, replace with borrow_M if known blob.rng = 0 blob.f_comp_a = 1 adert__, mask__ = comp_a(ext_dert__, ext_mask__) # compute abs ma, no indep eval if kwargs.get('verbose'): print('\na fork\n') blob.prior_forks.extend('a') if mask__.shape[0] > 2 and mask__.shape[ 1] > 2 and False in mask__: # min size in y and x, least one dert in dert__ sign__ = ( -adert__[3] * adert__[9] ) > ave * pcoef # -m * ma: variable value of comp_slice_, no ave_ma in comp_a cluster_sub_eval( blob, adert__, sign__, mask__, **kwargs) # forms sub_blobs of fork p sign in unmasked area spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest(spliced_layers, blob.sub_layers, fillvalue=[]) ] elif blob.M > AveB: # comp_r fork blob.rng += 1 blob.f_comp_a = 0 dert__, mask__ = comp_r(ext_dert__, Ave, blob.rng, ext_mask__) if kwargs.get('verbose'): print('\na fork\n') blob.prior_forks.extend('r') if mask__.shape[0] > 2 and mask__.shape[ 1] > 2 and False in mask__: # min size in y and x, at least one dert in dert__ sign__ = dert__[3] > 0 # m__: inverse deviation of g cluster_sub_eval( blob, dert__, sign__, mask__, **kwargs) # forms sub_blobs of sign in unmasked area spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest(spliced_layers, blob.sub_layers, fillvalue=[]) ] return spliced_layers
def intra_blob( blob, **kwargs): # recursive input rng+ | angle cross-comp within blob if kwargs.get( 'render' ) is not None: # stop rendering sub-blobs when blob is too small if blob.S < 100: kwargs['render'] = False spliced_layers = [] # to extend root_blob sub_layers ext_dert__, ext_mask = extend_dert(blob) if blob.fia: # comp_a -> P_blobs or comp_aga dert__, mask = comp_a( ext_dert__, ext_mask) # -> ga sub_blobs -> P_blobs (comp_d, comp_P) if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ # P_blobs eval, tentative: if blob.G * (1 - blob.Ga / 6 * blob.S) - aveB * blob.rdn > 0: # G reduced by Ga value, max_ga=6? # G is second deviation, or replace with Adj_blobs borrow value? # flatten day and dax: this should done for both if blob.fia forks, or a general default? dert__ = list(dert__) dert__ = (dert__[0], dert__[1], dert__[2], dert__[3], dert__[4], dert__[5][0], dert__[5][1], dert__[6][0], dert__[6][1], dert__[7], dert__[8]) crit__ = dert__[3] * ( 1 - dert__[7] / 6) - ave * blob.rdn # max_ga=6, separate from g and ga? sub_frame = cluster_derts_P(dert__, crit__, mask, ave * blob.rdn) sub_blobs = sub_frame['blob__'] blob.Ls = len(sub_blobs) # for visibility and next-fork rd blob.sub_layers = [sub_blobs] # 1st layer of sub_blobs # comp_aga eval, tentative: elif blob.G / (1 - blob.Ga / 6 * blob.S) - aveB > 0: # max_ga=6 # G increased by Ga value, # G is second deviation or specific borrow value? # flatten day and dax? crit__ = dert__[3] / (1 - dert__[7] / 100) - ave * blob.rdn # similar to eval per blob, replace 100 with max_ga value? # record separately from g and ga? sub_blobs = cluster_derts(dert__, crit__, mask) blob.Ls = len(sub_blobs) # for visibility and next-fork rd blob.sub_layers = [sub_blobs] # 1st layer of sub_blobs for sub_blob in sub_blobs: # evaluate for comp_aga only, not comp_r | P_blobs? G = blob.G adj_G = blob.adj_blobs[2] borrow = min(abs(G), abs(adj_G) / 2) # or adjacent M if negative sign? # same eval as in root elif?: if sub_blob.G + borrow > ave * blob.rdn: # also if +Ga, +Gaga, +Gr, +Gagr, +Grr... # comp_aga: runnable but not correct, the issue of nested day and dax need to be fixed first sub_blob.fia = 1 sub_blob.rdn = sub_blob.rdn + 1 + 1 / blob.Ls blob.sub_layers += intra_blob(sub_blob, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest(spliced_layers, blob.sub_layers, fillvalue=[]) ] else: # comp_r -> comp_r or comp_a if blob.M > aveB: dert__, mask = comp_r(ext_dert__, blob.fca, ext_mask) crit__ = dert__[4] - ave * blob.rdn if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ sub_blobs = cluster_derts(dert__, crit__, mask, verbose=False, **kwargs) # -> m sub_blobs # replace lines below with generic sub_eval()? blob.Ls = len(sub_blobs) # for visibility and next-fork rdn blob.sub_layers = [sub_blobs] # 1st layer of sub_blobs for sub_blob in sub_blobs: # evaluate for intra_blob comp_a | comp_r | P_blobs: G = blob.G adj_G = blob.adj_blobs[2] borrow = min(abs(G), abs(adj_G) / 2) # or adjacent M if negative sign? if sub_blob.G + borrow > ave * blob.rdn: # also if +Ga, +Gaga, +Gr, +Gagr, +Grr... # comp_a: sub_blob.rdn = sub_blob.rdn + 1 + 1 / blob.Ls blob.sub_layers += intra_blob(sub_blob, **kwargs) elif sub_blob.M > ave * blob.rdn: # if +Mr, +Mrr... # comp_r: sub_blob.rdn = sub_blob.rdn + 1 + 1 / blob.Ls sub_blob.fcr = 1 sub_blob.rng = blob.rng * 2 blob.sub_layers += intra_blob(sub_blob, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest( spliced_layers, blob.sub_layers, fillvalue=[]) ] elif blob.G > aveB: dert__, mask = comp_a(ext_dert__, ext_mask) # -> m sub_blobs crit__ = dert__[3] - ave * blob.rdn # call new sub_eval(), same as in comp_r fork return spliced_layers
def intra_blob( blob, **kwargs ): # slice_blob or recursive input rng+ | angle cross-comp within input blob Ave = int(ave * blob.rdn) AveB = int(aveB * blob.rdn) verbose = kwargs.get('verbose') if kwargs.get('render') is not None: # don't render small blobs if blob.A < 100: kwargs['render'] = False spliced_layers = [] # to extend root_blob sub_layers if blob.f_root_a: # root fork is comp_a -> slice_blob if blob.mask__.shape[0] > 2 and blob.mask__.shape[ 1] > 2 and False in blob.mask__: # min size in y and x, at least one dert in dert__ if ( -blob.Dert.M * blob.Dert.Ma - AveB > 0 ) and blob.Dert.Dx: # vs. G reduced by Ga: * (1 - Ga / (4.45 * A)), max_ga=4.45 blob.f_comp_a = 0 blob.prior_forks.extend('p') if kwargs.get('verbose'): print('\nslice_blob fork\n') segment_by_direction(blob, verbose=True) # derP_ = slice_blob(blob, []) # cross-comp of vertically consecutive Ps in selected stacks # blob.PP_ = derP_2_PP_(derP_, blob.PP_) # form vertically contiguous patterns of patterns else: # root fork is frame_blobs or comp_r ext_dert__, ext_mask__ = extend_dert( blob) # dert__ boundaries += 1, for cross-comp in larger kernels if blob.Dert.G > AveB: # comp_a fork, replace G with borrow_M when known adert__, mask__ = comp_a(ext_dert__, Ave, blob.prior_forks, ext_mask__) # compute ma and ga blob.f_comp_a = 1 if kwargs.get('verbose'): print('\na fork\n') blob.prior_forks.extend('a') if mask__.shape[0] > 2 and mask__.shape[ 1] > 2 and False in mask__: # min size in y and x, least one dert in dert__ sign__ = adert__[3] * adert__[ 8] > 0 # g * (ma / ave: deviation rate, no independent value, not co-measurable with g) dert__ = tuple([ adert__[0], adert__[1], adert__[2], adert__[3], adert__[4], adert__[5][0], adert__[5][1], adert__[6][0], adert__[6][1], adert__[7], adert__[8] ]) # flatten adert cluster_sub_eval( blob, dert__, sign__, mask__, **kwargs) # forms sub_blobs of sign in unmasked area spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest( spliced_layers, blob.sub_layers, fillvalue=[]) ] elif blob.Dert.M > AveB * 1.2: # comp_r fork, ave M = ave G * 1.2 dert__, mask__ = comp_r(ext_dert__, Ave, blob.f_root_a, ext_mask__) blob.f_comp_a = 0 if kwargs.get('verbose'): print('\na fork\n') blob.prior_forks.extend('r') if mask__.shape[0] > 2 and mask__.shape[ 1] > 2 and False in mask__: # min size in y and x, at least one dert in dert__ sign__ = dert__[4] > 0 # m__ is inverse deviation of SAD cluster_sub_eval( blob, dert__, sign__, mask__, **kwargs) # forms sub_blobs of sign in unmasked area spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest( spliced_layers, blob.sub_layers, fillvalue=[]) ] return spliced_layers
def intra_blob(blob, **kwargs): # recursive input rng+ | der+ cross-comp within blob # fig: flag input is g | p, fcr: flag comp over rng+ | der+ if kwargs.get( 'render' ) is not None: # stop rendering sub-blobs when blob is too small if blob.S < 100: kwargs['render'] = False spliced_layers = [] # to extend root_blob sub_layers ext_dert__, ext_mask = extend_dert(blob) if blob.fca: # comp_a dert__, mask = comp_a(ext_dert__, ext_mask) # -> xy_blobs (comp_d, comp_P) else: # comp_r dert__, mask = comp_r(ext_dert__, blob.fcr, ext_mask) # -> m sub_blobs if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ sub_blobs = cluster_derts(dert__, mask, ave * blob.rdn, blob.fcr, blob.fca, verbose=False, **kwargs) # fork params: blob.Ls = len(sub_blobs) # for visibility and next-fork rdn blob.sub_layers = [sub_blobs] # 1st layer of sub_blobs for sub_blob in sub_blobs: # evaluate for intra_blob comp_a | comp_r | xy_blobs: G = blob.G adj_G = blob.adj_blobs[2] borrow = min(abs(G), abs(adj_G) / 2) # or adjacent M if negative sign? # +Ga, +Gaga, +Gr, +Gagr, +Grr and so on if sub_blob.G + borrow > ave * blob.rdn: # comp_a sub_blob.rdn = sub_blob.rdn + 1 + 1 / blob.Ls blob.sub_layers += intra_blob(sub_blob, **kwargs) # +Ma, +Maga, +Magr and so on (root fork of xy_blobs always = comp_a) elif blob.fca == 1 and sub_blob.M > ave * blob.rdn: # xy_blobs image_to_blobs(sub_blob.root_dert__, verbose=False, render=False) # +Mr, +Mrr and so on elif sub_blob.M > ave * blob.rdn: # comp_r sub_blob.rdn = sub_blob.rdn + 1 + 1 / blob.Ls sub_blob.fcr = 1 sub_blob.rng = blob.rng * 2 blob.sub_layers += intra_blob(sub_blob, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest(spliced_layers, blob.sub_layers, fillvalue=[]) ] return spliced_layers
def intra_blob( blob, **kwargs): # recursive input rng+ | angle cross-comp within blob Ave = int(ave * blob.rdn) AveB = int(aveB * blob.rdn) if kwargs.get( 'render' ) is not None: # stop rendering sub-blobs when blob is too small if blob.S < 100: kwargs['render'] = False spliced_layers = [] # to extend root_blob sub_layers ext_dert__, ext_mask = extend_dert(blob) if blob.fia: # comp_a -> P_blobs or comp_aga dert__, mask = comp_a( ext_dert__, Ave, ext_mask) # -> ga sub_blobs -> P_blobs (comp_d, comp_P) if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ # cluster_derts_P eval, tentative, no cluster_derts_P yet: if blob.G * (1 - blob.Ga / (4.45 * blob.S)) - AveB > 0: # max_ga=4.45? # G reduced by Ga value, base G is second deviation or specific borrow value # flatten day and dax, not generalized for nested day and dax yet: dert__ = list(dert__) dert__ = (dert__[0], dert__[1], dert__[2], dert__[3], dert__[4], dert__[5][0], dert__[5][1], dert__[6][0], dert__[6][1], dert__[7], dert__[8]) crit__ = dert__[3] * ( 1 - dert__[7] / 4.45 ) - Ave # max_ga=4.45, record separately from g and ga? # ga is not signed, thus additional eval, different Ave? blob.fca = 0 sub_eval(blob, dert__, crit__, mask, **kwargs) # comp_aga eval, inverse relative ga value, tentative, no comp_aga yet: elif blob.G / ( 1 - blob.Ga / (4.45 * blob.S) ) - AveB > 0: # max_ga=4.45, init G is 2nd deviation or borrow value # G increased by Ga value, flatten day and dax? crit__ = dert__[3] / ( 1 - dert__[7] / 4.45 ) - Ave # ~ eval per blob, record separately from g and ga? # ga is not signed, thus additional eval, different Ave? blob.fca = 1 sub_eval(blob, dert__, crit__, mask, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest(spliced_layers, blob.sub_layers, fillvalue=[]) ] else: # comp_r -> comp_r or comp_a if blob.M > AveB: dert__, mask = comp_r(ext_dert__, Ave, blob.fia, ext_mask) crit__ = dert__[4] # signed inverse deviation of SAD if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ sub_eval(blob, dert__, crit__, mask, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest( spliced_layers, blob.sub_layers, fillvalue=[]) ] elif blob.G > AveB: dert__, mask = comp_a(ext_dert__, Ave, ext_mask) # -> m sub_blobs crit__ = dert__[3] # signed deviation of g if mask.shape[0] > 2 and mask.shape[ 1] > 2 and False in mask: # min size in y and x, least one dert in dert__ sub_eval(blob, dert__, crit__, mask, **kwargs) spliced_layers = [ spliced_layers + sub_layers for spliced_layers, sub_layers in zip_longest( spliced_layers, blob.sub_layers, fillvalue=[]) ] return spliced_layers
def intra_blob_root( root_blob, render, verbose, fBa ): # recursive evaluation of cross-comp slice| range| angle per blob # deep_blobs = [] # for visualization spliced_layers = [] if fBa: blob_ = root_blob.asublayers[0] else: blob_ = root_blob.rsublayers[0] for blob in blob_: # fork-specific blobs, print('Processing blob number ' + str(bcount)) blob.prior_forks = root_blob.prior_forks.copy( ) # increment forking sequence: g -> r|a, a -> p blob.root_dert__ = root_blob.dert__ blob_height = blob.box[1] - blob.box[0] blob_width = blob.box[3] - blob.box[2] if blob_height > 3 and blob_width > 3: # min blob dimensions: Ly, Lx if root_blob.fBa: # comp_slice fork in angle blobs # add evaluate splice_blobs(root_blob), normally in frame_bblobs? AveB = aveB * ( blob.rdn + 1 ) # comp_slice is doubling the costs, likely higher, adjust per nsub_blobs? if (AveB - blob.G) + ( blob.G - AveB * pcoef) > 0: # val_comp_slice_blob = dev_G + inv_dev_Ga blob.fBa = 0 blob.rdn = root_blob.rdn + 1 comp_slice_root(blob, verbose=True) blob.prior_forks.extend('p') if verbose: print( '\nslice_blob fork\n' ) # if render and blob.A < 100: deep_blobs.append(blob) else: ext_dert__, ext_mask__ = extend_dert( blob) # dert__+= 1: cross-comp in larger kernels ''' comp_r || comp_a, gap or overlap version: if aveBa < 1: blobs of ~average G are processed by both forks if aveBa > 1: blobs of ~average G are not processed: ''' if blob.G < aveB * blob.rdn: # below-average G, eval for comp_r # root values for sub_blobs: blob.fBa = 0 blob.rng = root_blob.rng + 1 blob.rdn = root_blob.rdn + 1.5 # comp cost * fork rdn # comp_r 4x4: new_dert__, new_mask__ = comp_r(ext_dert__, blob.rng, ext_mask__) sign__ = ave * (blob.rdn + 1) - new_dert__[3] > 0 # m__ = ave - g__ blob.prior_forks.extend('r') # if min Ly and Lx, dert__>=1: form, splice sub_blobs: if new_mask__.shape[0] > 2 and new_mask__.shape[ 1] > 2 and False in new_mask__: cluster_fork_recursive(blob, spliced_layers, new_dert__, sign__, new_mask__, verbose, render, fBa=0) if blob.G > aveB * aveBa * blob.rdn: # above-average G, eval for comp_a # root values for sub_blobs: blob.fBa = 1 blob.rdn = root_blob.rdn + 1.5 # comp cost * fork rdn # comp_a 2x2: new_dert__, new_mask__ = comp_a(ext_dert__, ext_mask__) Ave = ave * (blob.rdn + 1) sign__ = (new_dert__[1] - Ave) + ( Ave * pcoef - new_dert__[2] ) > 0 # val_comp_slice_= dev_gr + inv_dev_ga blob.prior_forks.extend('a') # if min Ly and Lx, dert__>=1: form, splice sub_blobs: if new_mask__.shape[0] > 2 and new_mask__.shape[ 1] > 2 and False in new_mask__: cluster_fork_recursive(blob, spliced_layers, new_dert__, sign__, new_mask__, verbose, render, fBa=1) ''' exclusive forks version: vG = blob.G - ave_G # deviation of gradient, from ave per blob, combined max rdn = blob.rdn+1: vvG = abs(vG) - ave_vG * blob.rdn # 2nd deviation of gradient, from fixed costs of if "new_dert__" loop below # vvG = 0 maps to max G for comp_r if vG < 0, and to min G for comp_a if vG > 0: if blob.sign: # sign of pixel-level g, which corresponds to sign of blob vG, so we don't need the later if vvG > 0: # below-average G, eval for comp_r... elif vvG > 0: # above-average G, eval for comp_a... ''' if verbose: print("\rFinished intra_blob") # print_deep_blob_forking(deep_blobs) return spliced_layers