def photom_variable_star(x0, y0, params, patch_half_width=15, converge=True, save_stamps=False, stamp_prefix='mosaic', locate=True, locate_iterations=2, locate_half_width=14, q_sigma_threshold=1.0, locate_date_range=None): from astropy.io import fits def save_mosaic(stack, nfiles, patch_size, name, diff_std, threshold): stamps_per_row = int(np.sqrt(nfiles)) nrows = (nfiles - 1) / stamps_per_row + 1 mx = stamps_per_row * (patch_size + 1) + 1 my = nrows * (patch_size + 1) + 1 mosaic = np.ones((my, mx)) * 1000.0 for i in range(nfiles): mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] \ = stack[i,:,:] if diff_std[i] > threshold: mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row)*(patch_size+1)+1] = -1000.0 mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row+1)*(patch_size+1)-1] = -1000.0 mosaic[(i/stamps_per_row)*(patch_size+1)+1, \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] = -1000.0 mosaic[(i/stamps_per_row+1)*(patch_size+1)-1, \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] = -1000.0 IO.write_image(mosaic, name) # Obtain a list of files all_files = os.listdir(params.loc_data) all_files.sort() filenames = [] nfiles = 0 print 'Searching in', params.loc_output, 'for', params.name_pattern for f in all_files: if fnmatch.fnmatch(f, params.name_pattern): basename = os.path.basename(f) dfile = params.loc_output + os.path.sep + 'd_' + basename ktable = params.loc_output + os.path.sep + 'k_' + basename if os.path.exists(dfile) and os.path.exists(ktable): nfiles += 1 filenames.append(f) # Load the kernel tables # Load the difference images into a data cube print len(filenames), 'files found' dates = np.zeros(nfiles) seeing = np.zeros(nfiles) roundness = np.zeros(nfiles) bgnd = np.zeros(nfiles) signal = np.zeros(nfiles) norm_std = np.zeros(nfiles, dtype=np.float64) diff_std = np.zeros(nfiles, dtype=np.float64) n_kernel = np.zeros(nfiles, dtype=np.int32) n_coeffs = np.zeros(nfiles, dtype=np.int32) kindex_x = np.arange(0, dtype=np.int32) kindex_y = np.arange(0, dtype=np.int32) kindex_ext = np.arange(0, dtype=np.int32) coeffs = np.arange(0, dtype=np.float64) filenames.sort() if not converge: locate_iterations = 1 threshold = -10 for iteration in range(np.max([1, locate_iterations])): ix0 = np.int32(x0 + 0.5) iy0 = np.int32(y0 + 0.5) x_patch = x0 - ix0 + patch_half_width y_patch = y0 - iy0 + patch_half_width patch_size = 2 * patch_half_width + 1 patch_slice = (ix0 - patch_half_width, ix0 + patch_half_width + 1, iy0 - patch_half_width, iy0 + patch_half_width + 1) d_image_stack = np.zeros((nfiles, patch_size, patch_size), dtype=np.float64) inv_var_image_stack = np.zeros((nfiles, patch_size, patch_size), dtype=np.float64) for i, f in enumerate(filenames): basename = os.path.basename(f) ktable = params.loc_output + os.path.sep + 'k_' + basename kernelIndex, extendedBasis, c, params = IO.read_kernel_table( ktable, params) coeffs = np.hstack((coeffs, c)) kindex_x = np.hstack((kindex_x, kernelIndex[:, 0].T)) kindex_y = np.hstack((kindex_y, kernelIndex[:, 1].T)) kindex_ext = np.hstack((kindex_ext, extendedBasis)) n_kernel[i] = kernelIndex.shape[0] n_coeffs[i] = c.shape[0] dates[i] = IO.get_date(params.loc_data + os.path.sep + basename, key=params.datekey) - 2450000 seeing[i], roundness[i], bgnd[i], signal[i] = IM.compute_fwhm( f, params, width=20, image_name=True) dfile = params.loc_output + os.path.sep + 'd_' + basename nfile = params.loc_output + os.path.sep + 'n_' + basename zfile = params.loc_output + os.path.sep + 'z_' + basename diff, _ = IO.read_fits_file(dfile) mask, _ = IO.read_fits_file(zfile) diff_sc = IM.undo_photometric_scale(diff, c, params.pdeg) diff_sc *= mask d_image_stack[i, :, :] = diff_sc[patch_slice[2]:patch_slice[3], patch_slice[0]:patch_slice[1]] norm, _ = IO.read_fits_file(nfile, slice=patch_slice) inv_var_image_stack[i, :, :] = (norm / d_image_stack[i, :, :])**2 diff_std[i] = np.std(diff) d_image_stack[i, :, :] -= np.median(d_image_stack[i, :, :]) if save_stamps: save_mosaic( d_image_stack, nfiles, patch_size, params.loc_output + os.path.sep + stamp_prefix + '.fits', diff_std, threshold) print 'kappa-clipping' qd1 = np.arange(len(filenames)) #qd = np.where(diff_std[qd1]<10) #qd1 = qd1[qd] for iter in range(10): qd = np.where(diff_std[qd1] < np.mean(diff_std[qd1]) + (4.0 - 1.5 * (iter / 9.0)) * np.std(diff_std[qd1])) qd1 = qd1[qd] print iter, np.mean(diff_std[qd1]), np.std(diff_std[qd1]), np.mean( diff_std[qd1]) + (4.0 - 3 * (iter / 9.0)) * np.std(diff_std[qd1]) print 'mean(diff) :', np.mean(diff_std[qd1]) print 'std(diff) :', np.std(diff_std[qd1]) print '1-sig threshold:', np.mean( diff_std[qd1]) + 1 * np.std(diff_std[qd1]) print '2-sig threshold:', np.mean( diff_std[qd1]) + 2 * np.std(diff_std[qd1]) print '3-sig threshold:', np.mean( diff_std[qd1]) + 3 * np.std(diff_std[qd1]) print '1-sig diff reject:', np.where( diff_std > np.mean(diff_std[qd1]) + 1 * np.std(diff_std[qd1])) print '2-sig diff reject:', np.where( diff_std > np.mean(diff_std[qd1]) + 2 * np.std(diff_std[qd1])) print '3-sig diff reject:', np.where( diff_std > np.mean(diff_std[qd1]) + 3 * np.std(diff_std[qd1])) threshold = np.mean( diff_std[qd1]) + q_sigma_threshold * np.std(diff_std[qd1]) threshold2 = np.mean(diff_std[qd1]) + 2 * np.std(diff_std[qd1]) threshold3 = np.mean(diff_std[qd1]) + 3 * np.std(diff_std[qd1]) if locate_date_range is not None: diff_std_copy = diff_std.copy() diff_std = diff_std * 0.0 + 2 * threshold pp = np.where((dates > locate_date_range[0]) & (dates < locate_date_range[1]))[0] if pp.any(): diff_std[pp] = diff_std_copy[pp] else: print 'Error: No images found in date range', locate_date_range print 'Reverting to all dates.' diff_std = diff_std_copy dsum = np.zeros((patch_size, patch_size), dtype=np.float64) for i in range(nfiles): if diff_std[i] < threshold3: dsum += d_image_stack[i, :, :] IO.write_image( dsum, params.loc_output + os.path.sep + 'dsum%d.fits' % iteration) dr = patch_half_width - int(locate_half_width) dsum[:dr, :] = 0.0 dsum[-dr:, :] = 0.0 dsum[:, :dr] = 0.0 dsum[:, -dr:] = 0.0 ind_dsum_max = np.unravel_index(dsum.argmax(), dsum.shape) print 'Iteration', iteration, ': dsum maximum located at ', ind_dsum_max if locate and converge: y0 += ind_dsum_max[0] - patch_half_width x0 += ind_dsum_max[1] - patch_half_width # Read the PSF psf_image = params.loc_output + os.path.sep + 'psf.fits' psf, psf_hdr = fits.getdata(psf_image, 0, header='true') psf_height = psf_hdr['PSFHEIGH'] psf_sigma_x = psf_hdr['PAR1'] * 0.8493218 psf_sigma_y = psf_hdr['PAR2'] * 0.8493218 psf_x = psf_hdr['PSFX'] psf_y = psf_hdr['PSFY'] psf_size = psf.shape[1] psf_fit_rad = params.psf_fit_radius psf_parameters = np.array([ psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain ]).astype(np.float64) if params.psf_profile_type == 'gaussian': psf_sigma_x = psf_hdr['PAR1'] * 0.8493218 psf_sigma_y = psf_hdr['PAR2'] * 0.8493218 psf_parameters = np.array([ psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain ]).astype(np.float64) profile_type = 0 elif params.psf_profile_type == 'moffat25': print 'params.psf_profile_type moffat25 not working yet. Exiting.' sys.exit(0) psf_sigma_x = psf_hdr['PAR1'] psf_sigma_y = psf_hdr['PAR2'] psf_sigma_xy = psf_hdr['PAR3'] psf_parameters = np.array([ psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain, psf_sigma_xy ]).astype(np.float64) profile_type = 1 else: print 'params.psf_profile_type undefined' sys.exit(0) psf_0 = psf.astype(np.float64).copy() psf_xd = psf.astype(np.float64).copy() * 0.0 psf_yd = psf.astype(np.float64).copy() * 0.0 flux = np.zeros(nfiles, dtype=np.float64) dflux = np.zeros(nfiles, dtype=np.float64) x0_arr = np.atleast_1d(np.array([x0], dtype=np.float64)) y0_arr = np.atleast_1d(np.array([y0], dtype=np.float64)) cu_photom_converge( profile_type, patch_half_width, params.pdeg, params.sdeg, nfiles, n_kernel, kindex_x, kindex_y, kindex_ext, n_coeffs, coeffs.astype(np.float64), psf_parameters, psf_0, psf_xd, psf_yd, np.float64(d_image_stack.ravel()), inv_var_image_stack, diff_std, np.float64(threshold), x0_arr, y0_arr, x_patch, y_patch, diff.shape[1], diff.shape[0], 16, 16, flux, dflux, np.float64(params.gain), np.int32(converge), np.float64(2.5)) if save_stamps: save_mosaic( d_image_stack, nfiles, patch_size, params.loc_output + os.path.sep + 'p' + stamp_prefix + '.fits', diff_std, threshold) if locate_date_range is not None: diff_std = diff_std_copy return dates, seeing, roundness, bgnd, signal, flux, dflux, diff_std / threshold, x0_arr[ 0], y0_arr[0]
def imsub_all_fits(params, reference='ref.fits'): # # Create the output directory if it doesn't exist # if not (os.path.exists(params.loc_output)): os.mkdir(params.loc_output) # # The degree of spatial shape changes has to be at least as # high as the degree of spatial photometric scale # if (params.sdeg < params.pdeg): print 'Increasing params.sdeg to ', params.pdeg params.sdeg = params.pdeg # # Print out the parameters for this run. # print 'Parameters:' for par in dir(params): print par, getattr(params, par) print # # Determine our list of images # all_files = os.listdir(params.loc_data) all_files.sort() files = [] for f in all_files: print 'file', f if fnmatch.fnmatch(f, params.name_pattern): g = DS.Observation(params.loc_data + os.path.sep + f, params) del g.data del g.mask print 'fw', g.fw if g.fw > 0.0: files.append(g) print g.name, 'accepted' if len(files) < 3: print 'Only', len(files), 'files found matching', params.name_pattern print 'Exiting' sys.exit(0) # # Have we specified a registration template? # if params.registration_image: reg = DS.Observation(params.registration_image, params) else: reg = DS.EmptyBase() reg.fw = 999.0 for f in files: if (f.fw < reg.fw) and (f.fw > params.reference_min_seeing) and ( f.sky < params.registration_max_background): reg = f print 'Registration image:', reg.name # # Register images # print 'Registering images' files_copy = [f for f in files] for f in files: print f.name if f == reg: f.image = f.data rf = params.loc_output + os.path.sep + 'r_' + f.name IO.write_image(f.image, rf) else: if not f.register(reg, params): files_copy.remove(f) # delete image arrays to save memory del f.image del f.mask del f.inv_variance del reg.data del reg.image del reg.mask del reg.inv_variance files = files_copy # # Write image names and dates to a file # if params.image_list_file: try: with open(params.loc_output + os.path.sep + params.image_list_file, 'w') as fid: for f in files: date = None if params.datekey: date = IO.get_date( params.loc_data + os.path.sep + f.name, key=params.datekey) - 2450000 if date: fid.write(f.name + ' %10.5f\n' % date) else: fid.write(f.name) except: raise # # Make the photometric reference image if we don't have it. # Find stamp positions if required. # if not (os.path.exists(params.loc_output + os.path.sep + reference)): print 'Reg = ', reg.name stamp_positions = make_reference(files, reg, params, reference_image=reference) ref = DS.Observation(params.loc_output + os.path.sep + reference, params) mask, _ = IO.read_fits_file(params.loc_output + os.path.sep + 'mask_' + reference) variance, _ = IO.read_fits_file(params.loc_output + os.path.sep + 'var_' + reference) ref.mask = mask ref.inv_variance = 1.0 / variance ref.register(reg, params) else: ref = DS.Observation(params.loc_output + os.path.sep + reference, params) if os.path.exists(params.loc_output + os.path.sep + 'mask_' + reference): mask, _ = IO.read_fits_file(params.loc_output + os.path.sep + 'mask_' + reference) else: mask = np.ones_like(ref.data) ref.mask = mask ref.register(reg, params) stamp_positions = None if params.use_stamps: stamp_file = params.loc_output + os.path.sep + 'stamp_positions' if os.path.exists(stamp_file): stamp_positions = np.genfromtxt(stamp_file) else: stars = PF.choose_stamps(ref, params) stamp_positions = stars[:, 0:2] np.savetxt(stamp_file, stamp_positions) pm = params.pixel_max params.pixel_max *= 0.9 ref.mask *= IM.compute_saturated_pixel_mask(ref.image, params) params.pixel_max = pm ref.blur = IM.boxcar_blur(ref.image) if params.mask_cluster: ref.mask *= IM.mask_cluster(ref.image, ref.mask, params) # # Detect stars and compute the PSF if we are doing photometry # star_positions = None sky = 0.0 if params.do_photometry: star_file = params.loc_output + os.path.sep + 'star_positions' psf_file = params.loc_output + os.path.sep + 'psf.fits' if not (os.path.exists(psf_file)) or not (os.path.exists(star_file)): stars = PH.compute_psf_image(params, ref, psf_image=psf_file) star_positions = stars[:, 0:2] star_sky = stars[:, 4] if os.path.exists(star_file): star_positions = np.genfromtxt(star_file) star_sky = star_positions[:, 0] * 0.0 else: np.savetxt(star_file, star_positions) print 'sky =', sky # # If we have pre-determined star positions # if params.star_file: stars = np.genfromtxt(params.star_file) star_positions = stars[:, 1:3] if params.star_reference_image: star_ref, h = IO.read_fits_file(params.star_reference_image) offset, _, _ = register_translation(star_ref, ref.image, 1000) dy, dx = offset #dy, dx = IM.positional_shift(ref.image,star_ref) print 'position shift =', dx, dy star_positions[:, 0] -= dx star_positions[:, 1] -= dy np.savetxt(star_file, star_positions) # # If we are using a CPU, group the stars by location # print 'Group_check' print 'params.do_photometry', params.do_photometry print 'params.use_GPU', params.use_GPU if params.do_photometry: star_group_boundaries = None detector_mean_positions_x = None detector_mean_positions_y = None star_unsort_index = None star_sort_index,star_group_boundaries,detector_mean_positions_x,detector_mean_positions_y = \ PH.group_stars_ccd(params,star_positions,params.loc_output+os.path.sep+reference) star_positions = star_positions[star_sort_index] star_sky = star_sky[star_sort_index] star_unsort_index = np.argsort(star_sort_index) # # Do photometry of the reference image # if params.do_photometry: ref_flux_file = params.loc_output + os.path.sep + 'ref.flux' if not (os.path.exists(ref_flux_file)): result = difference_image( ref, ref, params, stamp_positions=stamp_positions, psf_image=psf_file, star_positions=star_positions, star_group_boundaries=star_group_boundaries, detector_mean_positions_x=detector_mean_positions_x, detector_mean_positions_y=detector_mean_positions_y, star_sky=star_sky) if isinstance(result.flux, np.ndarray): print 'ungrouping fluxes' result.flux = result.flux[star_unsort_index].copy() result.dflux = result.dflux[star_unsort_index].copy() np.savetxt(ref_flux_file, np.vstack((result.flux, result.dflux)).T) # # Process images # if params.make_difference_images: if not (params.use_GPU) and (params.n_parallel > 1): pool = Pool(params.n_parallel) pool.map( process_image_helper, itertools.izip( files, itertools.repeat( (ref, params, stamp_positions, star_positions, star_group_boundaries, star_unsort_index, detector_mean_positions_x, detector_mean_positions_y)))) else: for f in files: process_image( f, (ref, params, stamp_positions, star_positions, star_group_boundaries, star_unsort_index, detector_mean_positions_x, detector_mean_positions_y)) return files
def photom_variable_star(x0,y0,params,patch_half_width=15,converge=True,save_stamps=False,stamp_prefix='mosaic',locate=True,locate_iterations=2, locate_half_width=14,q_sigma_threshold=1.0,locate_date_range=None): from astropy.io import fits from scipy.ndimage.filters import median_filter outer_radius = 15 inner_radius = 12 diameter = 2*outer_radius + 1 x = np.arange(diameter)-outer_radius xx,yy = np.meshgrid(x,x) filter_kernel = np.zeros((diameter,diameter)) filter_kernel[xx**2+yy**2<=outer_radius**2] = 1 filter_kernel[xx**2+yy**2<=inner_radius**2] = 0 def save_mosaic(stack,nfiles,patch_size,name,diff_std,threshold): stamps_per_row = int(np.sqrt(nfiles)) nrows = (nfiles-1)/stamps_per_row+1; mx = stamps_per_row*(patch_size+1)+1 my = nrows*(patch_size+1)+1 mosaic = np.ones((my,mx))*1000.0 for i in range(nfiles): mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] \ = stack[i,:,:] if diff_std[i] > threshold: mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row)*(patch_size+1)+1] = -1000.0 mosaic[(i/stamps_per_row)*(patch_size+1)+1:(i/stamps_per_row+1)*(patch_size+1), \ (i%stamps_per_row+1)*(patch_size+1)-1] = -1000.0 mosaic[(i/stamps_per_row)*(patch_size+1)+1, \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] = -1000.0 mosaic[(i/stamps_per_row+1)*(patch_size+1)-1, \ (i%stamps_per_row)*(patch_size+1)+1:(i%stamps_per_row+1)*(patch_size+1)] = -1000.0 IO.write_image(mosaic,name) # Obtain a list of files all_files = os.listdir(params.loc_data) all_files.sort() filenames = [] nfiles = 0 print 'Searching in', params.loc_output, 'for', params.name_pattern for f in all_files: if fnmatch.fnmatch(f,params.name_pattern): basename = os.path.basename(f) dfile = params.loc_output+os.path.sep+'d_'+basename ktable = params.loc_output+os.path.sep+'k_'+basename if os.path.exists(dfile) and os.path.exists(ktable): nfiles += 1 filenames.append(f) # Load the kernel tables # Load the difference images into a data cube print len(filenames), 'files found' dates = np.zeros(nfiles) seeing = np.zeros(nfiles) roundness = np.zeros(nfiles) bgnd = np.zeros(nfiles) signal = np.zeros(nfiles) norm_std = np.zeros(nfiles,dtype=np.float64) diff_std = np.zeros(nfiles,dtype=np.float64) n_kernel = np.zeros(nfiles,dtype=np.int32) n_coeffs = np.zeros(nfiles,dtype=np.int32) kindex_x = np.arange(0,dtype=np.int32) kindex_y = np.arange(0,dtype=np.int32) kindex_ext = np.arange(0,dtype=np.int32) coeffs = np.arange(0,dtype=np.float64) filenames.sort() if not converge: locate_iterations = 1 threshold = -10 for iteration in range(np.max([1,locate_iterations])): #ix0 = np.int32(x0+0.5) #iy0 = np.int32(y0+0.5) ix0 = np.int32(x0) iy0 = np.int32(y0) x_patch = x0 - ix0 + patch_half_width y_patch = y0 - iy0 + patch_half_width patch_size = 2*patch_half_width+1 patch_slice = np.array([ix0-patch_half_width, ix0+patch_half_width+1, iy0-patch_half_width, iy0+patch_half_width+1]) print 'patch_slice:', patch_slice # check that patch doesn't overlap the edge of the image f = filenames[0] diff, _ = IO.read_fits_file(params.loc_output+os.path.sep+'d_'+os.path.basename(f)) nx = diff.shape[1] ny = diff.shape[0] delta_patch_x = 0 delta_patch_y = 0 if patch_slice[0] < 0: delta_patch_x = -patch_slice[0] elif patch_slice[1] >= nx: delta_patch_x = nx - patch_slice[1] - 1 if patch_slice[2] < 0: delta_patch_y = -patch_slice[2] elif patch_slice[3] >= ny: delta_patch_y = ny - patch_slice[3] - 1 print 'delta_patch_x, delta_patch_y:', delta_patch_x, delta_patch_y patch_slice += np.array([delta_patch_x,delta_patch_x,delta_patch_y,delta_patch_y]) print 'patch_slice:', patch_slice x_patch -= delta_patch_x y_patch -= delta_patch_y d_image_stack = np.zeros((nfiles,patch_size,patch_size),dtype=np.float64) inv_var_image_stack = np.zeros((nfiles,patch_size,patch_size),dtype=np.float64) dmask = np.ones([patch_size,patch_size],dtype=np.bool) dmask_rad = 8.0 dmix = np.linspace(-patch_half_width,patch_half_width,patch_size) - delta_patch_x dmiy = np.linspace(-patch_half_width,patch_half_width,patch_size) - delta_patch_y dmx, dmy = np.meshgrid(dmix,dmiy,indexing='ij') dmask[dmx**2 + dmy**2 < dmask_rad**2] = False for i, f in enumerate(filenames): basename = os.path.basename(f) ktable = params.loc_output+os.path.sep+'k_'+basename kernelIndex, extendedBasis, c, params = IO.read_kernel_table(ktable,params) coeffs = np.hstack((coeffs,c)) kindex_x = np.hstack((kindex_x,kernelIndex[:,0].T)) kindex_y = np.hstack((kindex_y,kernelIndex[:,1].T)) kindex_ext = np.hstack((kindex_ext,extendedBasis)) n_kernel[i] = kernelIndex.shape[0] n_coeffs[i] = c.shape[0] dates[i] = IO.get_date(params.loc_data+os.path.sep+basename,key=params.datekey) if dates[i] > 2450000: dates[i] -= 2450000 seeing[i], roundness[i], bgnd[i], signal[i] = IM.compute_fwhm(f,params,width=20,image_name=True) dfile = params.loc_output+os.path.sep+'d_'+basename nfile = params.loc_output+os.path.sep+'n_'+basename zfile = params.loc_output+os.path.sep+'sm_'+basename ivfile = params.loc_output+os.path.sep+'iv_'+basename diff, _ = IO.read_fits_file(dfile) mask, _ = IO.read_fits_file(zfile) iv, _ = IO.read_fits_file(ivfile) diff_sc = IM.undo_photometric_scale(diff,c,params.pdeg) #diff_sc = diff #diff_sc -= median_filter(diff_sc,footprint=filter_kernel) diff_sc *= mask d_image_stack[i,:,:] = diff_sc[patch_slice[2]:patch_slice[3],patch_slice[0]:patch_slice[1]] inv_var_image_stack[i,:,:], _ = IO.read_fits_file(ivfile,slice=patch_slice) #inv_var_image_stack[i,:,:] = (norm / d_image_stack[i,:,:])**2 #diff_std[i] = np.std(diff) diff_std[i] = np.std(d_image_stack[i,:,:][dmask]) d_image_stack[i,:,:] -= np.median(d_image_stack[i,:,:]) print 'kappa-clipping' qd = np.arange(len(filenames)) qd1 = np.where(np.isfinite(diff_std))[0] for iter in range(10): qd = np.where(diff_std[qd1]<np.mean(diff_std[qd1])+(4.0-1.5*(iter/9.0))*np.std(diff_std[qd1]))[0] qd1 = qd1[qd] print iter, np.mean(diff_std[qd1]), np.std(diff_std[qd1]), np.mean(diff_std[qd1])+(4.0-3*(iter/9.0))*np.std(diff_std[qd1]) print 'mean(diff) :',np.mean(diff_std[qd1]) print 'std(diff) :',np.std(diff_std[qd1]) print '1-sig threshold:', np.mean(diff_std[qd1])+1*np.std(diff_std[qd1]) print '2-sig threshold:', np.mean(diff_std[qd1])+2*np.std(diff_std[qd1]) print '3-sig threshold:', np.mean(diff_std[qd1])+3*np.std(diff_std[qd1]) print '1-sig diff reject:',np.where(diff_std>np.mean(diff_std[qd1])+1*np.std(diff_std[qd1])) print '2-sig diff reject:',np.where(diff_std>np.mean(diff_std[qd1])+2*np.std(diff_std[qd1])) print '3-sig diff reject:',np.where(diff_std>np.mean(diff_std[qd1])+3*np.std(diff_std[qd1])) threshold = np.mean(diff_std[qd1])+q_sigma_threshold*np.std(diff_std[qd1]) threshold2 = np.mean(diff_std[qd1])+2*np.std(diff_std[qd1]) threshold3 = np.mean(diff_std[qd1])+3*np.std(diff_std[qd1]) if locate_date_range is not None: diff_std_copy = diff_std.copy() diff_std = diff_std*0.0 + 100.0*threshold pp = np.where((dates>locate_date_range[0]) & (dates<locate_date_range[1]))[0] if pp.any(): print 'Using images ',pp diff_std[pp] = diff_std_copy[pp] else: print 'Error: No images found in date range',locate_date_range print 'Reverting to all dates.' diff_std = diff_std_copy print 'zeros:' for i in range(nfiles): print i, np.sum(np.abs(d_image_stack[i,:,:]) < 1.e-6) if np.isnan(inv_var_image_stack[i,:,:]).any() or np.sum(np.abs(d_image_stack[i,:,:]) < 1.e-6) > 5: diff_std[i] = 100.0*threshold inv_var_image_stack[i,:,:] = inv_var_image_stack[i,:,:]*0.0 if save_stamps: save_mosaic(d_image_stack,nfiles,patch_size,params.loc_output+os.path.sep+stamp_prefix+'.fits',diff_std,threshold) dsum = np.zeros((patch_size,patch_size),dtype=np.float64) for i in range(nfiles): if diff_std[i] < threshold3: dsum += d_image_stack[i,:,:] IO.write_image(dsum,params.loc_output+os.path.sep+'dsum%d.fits'%iteration) dr = patch_half_width-int(locate_half_width) print 'dr:', dr dsum[:dr-delta_patch_y,:] = 0.0 dsum[-dr-delta_patch_y:,:] = 0.0 dsum[:,:dr-delta_patch_x] = 0.0 dsum[:,-dr-delta_patch_x:] = 0.0 IO.write_image(dsum,params.loc_output+os.path.sep+'dsum_m%d.fits'%iteration) ind_dsum_max = np.unravel_index(dsum.argmax(),dsum.shape) print 'Iteration',iteration,': dsum maximum located at ',ind_dsum_max if locate and converge: y0 += ind_dsum_max[0] - patch_half_width + delta_patch_y x0 += ind_dsum_max[1] - patch_half_width + delta_patch_x # Read the PSF psf_image = params.loc_output+os.path.sep+'psf.fits' psf,psf_hdr = fits.getdata(psf_image,0,header='true') psf_height = psf_hdr['PSFHEIGH'] psf_sigma_x = psf_hdr['PAR1']*0.8493218 psf_sigma_y = psf_hdr['PAR2']*0.8493218 psf_x = psf_hdr['PSFX'] psf_y = psf_hdr['PSFY'] psf_size = psf.shape[1] psf_fit_rad = params.psf_fit_radius psf_parameters = np.array([psf_size,psf_height,psf_sigma_x,psf_sigma_y,psf_x, psf_y,psf_fit_rad,params.gain]).astype(np.float64) if params.psf_profile_type == 'gaussian': psf_sigma_x = psf_hdr['PAR1']*0.8493218 psf_sigma_y = psf_hdr['PAR2']*0.8493218 psf_parameters = np.array([psf_size,psf_height,psf_sigma_x,psf_sigma_y,psf_x, psf_y,psf_fit_rad,params.gain]).astype(np.float64) profile_type = 0 elif params.psf_profile_type == 'moffat25': print 'params.psf_profile_type moffat25 not working yet. Exiting.' sys.exit(0) psf_sigma_x = psf_hdr['PAR1'] psf_sigma_y = psf_hdr['PAR2'] psf_sigma_xy = psf_hdr['PAR3'] psf_parameters = np.array([psf_size,psf_height,psf_sigma_x,psf_sigma_y,psf_x, psf_y, psf_fit_rad,params.gain,psf_sigma_xy]).astype(np.float64) profile_type = 1 else: print 'params.psf_profile_type undefined' sys.exit(0) psf_0 = psf.astype(np.float64).copy() psf_xd = psf.astype(np.float64).copy()*0.0 psf_yd = psf.astype(np.float64).copy()*0.0 flux = np.zeros(nfiles,dtype=np.float64) dflux = np.zeros(nfiles,dtype=np.float64) x0_arr = np.atleast_1d(np.array([x0],dtype=np.float64)) y0_arr = np.atleast_1d(np.array([y0],dtype=np.float64)) print 'Converging photometry' print 'x0, y0:', x0, y0 print 'x_patch, y_patch:', x_patch, y_patch good_images = np.where(diff_std < threshold)[0] print 'using images', good_images print 'threshold', threshold for i, f in enumerate(filenames): if i in good_images: print i, 'd_'+f, diff_std[i] cu_photom_converge(profile_type, patch_half_width, params.pdeg, params.sdeg, nfiles, n_kernel, kindex_x, kindex_y, kindex_ext, n_coeffs, coeffs.astype(np.float64), psf_parameters, psf_0, psf_xd, psf_yd, np.float64(d_image_stack.ravel()), np.float64(inv_var_image_stack.ravel()), diff_std, np.float64(threshold), x0_arr, y0_arr, x_patch, y_patch, diff.shape[1], diff.shape[0], 16, 16, flux, dflux, np.float64(params.gain),np.int32(converge),np.float64(2.5)) if save_stamps: save_mosaic(d_image_stack,nfiles,patch_size,params.loc_output+os.path.sep+'p'+stamp_prefix+'.fits',diff_std,threshold) if locate_date_range is not None: diff_std = diff_std_copy return dates, seeing, roundness, bgnd, signal, flux, dflux, diff_std/threshold, x0_arr[0], y0_arr[0]