Пример #1
0
            epnp_tvec_error, epnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, epnpCam.get_tvec(), epnp_rmat)
            epnp_tvec_error_loop.append(epnp_tvec_error)
            epnp_rmat_error_loop.append(epnp_rmat_error)

            pnp_tvec_error, pnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, pnpCam.get_tvec(), pnp_rmat)
            pnp_tvec_error_loop.append(pnp_tvec_error)
            pnp_rmat_error_loop.append(pnp_rmat_error)

            #Homography Estimation from noisy image points

            #DLT TRANSFORM
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_dlt, _, _ = homo2d.homography2d(Xo, Xi)
            Hnoisy_dlt = Hnoisy_dlt / Hnoisy_dlt[2, 2]

            #HO METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_HO = hh(Xo, Xi)

            #OpenCV METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_OpenCV, _ = cv2.findHomography(Xo[:2].T.reshape(1, -1, 2),
                                                  Xi[:2].T.reshape(1, -1, 2))

            ## ERRORS FOR THE  DLT HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
Пример #2
0
    def calculate_metrics(self):
        new_objectPoints = self.ObjectPoints[-1]
        cam = self.Camera[-1]
        validation_plane = self.ValidationPlane
        new_imagePoints = np.array(cam.project(new_objectPoints, False))
        self.ImagePoints.append(new_imagePoints)
        #CONDITION NUMBER CALCULATION
        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond = gd.matrix_condition_number_autograd(*input_list,
                                                       normalize=False)

        #CONDITION NUMBER WITH A NORMALIZED CALCULATION
        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond_normalized = gd.matrix_condition_number_autograd(
            *input_list, normalize=True)

        self.CondNumber.append(mat_cond)
        self.CondNumberNorm.append(mat_cond_normalized)

        ##HOMOGRAPHY ERRORS
        ## TRUE VALUE OF HOMOGRAPHY OBTAINED FROM CAMERA PARAMETERS
        Hcam = cam.homography_from_Rt()
        ##We add noise to the image points and calculate the noisy homography
        homo_dlt_error_loop = []
        homo_HO_error_loop = []
        homo_CV_error_loop = []
        ippe_tvec_error_loop = []
        ippe_rmat_error_loop = []
        epnp_tvec_error_loop = []
        epnp_rmat_error_loop = []
        pnp_tvec_error_loop = []
        pnp_rmat_error_loop = []

        # WE CREATE NOISY IMAGE POINTS (BASED ON THE TRUE VALUES) AND CALCULATE
        # THE ERRORS WE THEN OBTAIN AN AVERAGE FOR EACH ONE
        for j in range(self.ValidationIters):
            new_imagePoints_noisy = cam.addnoise_imagePoints(
                new_imagePoints, mean=0, sd=self.ImageNoise)

            #Calculate the pose using IPPE (solution with least repro error)
            normalizedimagePoints = cam.get_normalized_pixel_coordinates(
                new_imagePoints_noisy)
            ippe_tvec1, ippe_rmat1, ippe_tvec2, ippe_rmat2 = pose_ippe_both(
                new_objectPoints, normalizedimagePoints, debug=False)
            ippeCam1 = cam.clone_withPose(ippe_tvec1, ippe_rmat1)

            #Calculate the pose using solvepnp EPNP
            debug = False
            epnp_tvec, epnp_rmat = pose_pnp(new_objectPoints,
                                            new_imagePoints_noisy, cam.K,
                                            debug, cv2.SOLVEPNP_EPNP, False)
            epnpCam = cam.clone_withPose(epnp_tvec, epnp_rmat)

            #Calculate the pose using solvepnp ITERATIVE
            pnp_tvec, pnp_rmat = pose_pnp(new_objectPoints,
                                          new_imagePoints_noisy, cam.K, debug,
                                          cv2.SOLVEPNP_ITERATIVE, False)
            pnpCam = cam.clone_withPose(pnp_tvec, pnp_rmat)

            #Calculate errors
            ippe_tvec_error1, ippe_rmat_error1 = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, ippeCam1.get_tvec(), ippe_rmat1)
            ippe_tvec_error_loop.append(ippe_tvec_error1)
            ippe_rmat_error_loop.append(ippe_rmat_error1)

            epnp_tvec_error, epnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, epnpCam.get_tvec(), epnp_rmat)
            epnp_tvec_error_loop.append(epnp_tvec_error)
            epnp_rmat_error_loop.append(epnp_rmat_error)

            pnp_tvec_error, pnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, pnpCam.get_tvec(), pnp_rmat)
            pnp_tvec_error_loop.append(pnp_tvec_error)
            pnp_rmat_error_loop.append(pnp_rmat_error)

            #Homography Estimation from noisy image points

            #DLT TRANSFORM
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_dlt, _, _ = homo2d.homography2d(Xo, Xi)
            Hnoisy_dlt = Hnoisy_dlt / Hnoisy_dlt[2, 2]

            #HO METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_HO = hh(Xo, Xi)

            #OpenCV METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_OpenCV, _ = cv2.findHomography(Xo[:2].T.reshape(1, -1, 2),
                                                  Xi[:2].T.reshape(1, -1, 2))

            ## ERRORS FOR THE  DLT HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_dlt_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_dlt))

            ## ERRORS FOR THE  HO HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_HO_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_HO))

            ## ERRORS FOR THE  OpenCV HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_CV_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_OpenCV))

        self.Homo_DLT_mean.append(np.mean(homo_dlt_error_loop))
        self.Homo_HO_mean.append(np.mean(homo_HO_error_loop))
        self.Homo_CV_mean.append(np.mean(homo_CV_error_loop))
        self.ippe_tvec_error_mean.append(np.mean(ippe_tvec_error_loop))
        self.ippe_rmat_error_mean.append(np.mean(ippe_rmat_error_loop))
        self.epnp_tvec_error_mean.append(np.mean(epnp_tvec_error_loop))
        self.epnp_rmat_error_mean.append(np.mean(epnp_rmat_error_loop))
        self.pnp_tvec_error_mean.append(np.mean(pnp_tvec_error_loop))
        self.pnp_rmat_error_mean.append(np.mean(pnp_rmat_error_loop))

        self.Homo_DLT_std.append(np.std(homo_dlt_error_loop))
        self.Homo_HO_std.append(np.std(homo_HO_error_loop))
        self.Homo_CV_std.append(np.std(homo_CV_error_loop))
        self.ippe_tvec_error_std.append(np.std(ippe_tvec_error_loop))
        self.ippe_rmat_error_std.append(np.std(ippe_rmat_error_loop))
        self.epnp_tvec_error_std.append(np.std(epnp_tvec_error_loop))
        self.epnp_rmat_error_std.append(np.std(epnp_rmat_error_loop))
        self.pnp_tvec_error_std.append(np.std(pnp_tvec_error_loop))
        self.pnp_rmat_error_std.append(np.std(pnp_rmat_error_loop))
Пример #3
0
            )
            plt.xlim(0, 1280)
            plt.ylim(0, 960)
            #if i==0:
            #    plt.legend()

            plt.gca().invert_yaxis()
        #plt.pause(0.05)

        ## NOW FOR EACH SET OF POINTS WE CALCULATE THE HOMOGRAPHY USING THE DLT ALGORITHM

        ## REFERENCE OBJECT POINTS
        Xo = objectPoints_ref[[0, 1, 3], :]
        Xi = imagePoints_ref_noisy
        Aref = ef.calculate_A_matrix(Xo, Xi)
        Href, A_t_ref, H_t = homo2d.homography2d(Xo, Xi)
        Href = Href / Href[2, 2]

        ## NOW FOR POINTS WITH A DESIRED CONFIGURATION
        Xo = np.copy(objectPoints_des)
        Xo = np.delete(Xo, 2, axis=0)
        Xi = np.copy(imagePoints_des_noisy)
        Ades = ef.calculate_A_matrix(Xo, Xi)
        Hdes, A_t_des, _ = homo2d.homography2d(Xo, Xi)
        Hdes = Hdes / Hdes[2, 2]

        ## CALCULATE HOMOGRAPHY ESTIMATION ERRORS
        ## we need points without noise to confirm
        ## object coordinates dont have noise, only image coordinates

        ## VALIDATION OBJECT POINTS
Пример #4
0
    mat_cond = ef.get_matrix_pnorm_condition_number(Aideal)

    ##HOMOGRAPHY ERRORS
    ## TRUE VALUE OF HOMOGRAPHY OBTAINED FROM CAMERA PARAMETERS
    Hcam = cam.homography_from_Rt()
    homography_iters = 1000
    ##We add noise to the image points and calculate the noisy homography
    transfer_error_sum = 0
    for j in range(homography_iters):
        new_imagePoints_noisy = cam.addnoise_imagePoints(new_imagePoints,
                                                         mean=0,
                                                         sd=1)
        #Noisy homography calculation
        Xo = new_objectPoints[[0, 1, 3], :]
        Xi = new_imagePoints_noisy
        Hnoisy, A_t_ref, H_t = homo2d.homography2d(Xo, Xi)
        Hnoisy = Hnoisy / Hnoisy[2, 2]

        ## ERRORS FOR THE NOISY HOMOGRAPHY
        ## VALIDATION OBJECT POINTS
        validation_objectPoints = validation_plane.get_points()
        validation_imagePoints = np.array(
            cam.project(validation_objectPoints, False))
        Xo = np.copy(validation_objectPoints)
        Xo = np.delete(Xo, 2, axis=0)
        Xi = np.copy(validation_imagePoints)
        transfer_error_sum += ef.validation_points_error(Xi, Xo, Hnoisy)
    transfer_error_list.append(transfer_error_sum / homography_iters)

    plt.figure("Average Transfer error")
    plt.cla()
Пример #5
0
                                                         mean=0,
                                                         sd=4)

        ## NOW FOR EACH SET OF POINTS WE CALCULATE THE HOMOGRAPHY USING THE DLT ALGORITHM

        ## NOW FOR POINTS WITH A DESIRED CONFIGURATION
        #Calculate the homography

        Xo = np.copy(
            objectPoints_des[[0, 1, 3], :])  #without the z coordinate (plane)
        Xi = np.copy(imagePoints_des_noisy)
        Ades = calculate_A_matrix(Xo, Xi)

        #Ades = calculate_A_matrix(Xo, Xi)

        Hdes, A_t_des, _ = homo2d.homography2d(Xo, Xi)
        Hdes = Hdes / Hdes[2, 2]

        ## CALCULATE HOMOGRAPHY ESTIMATION ERRORS
        ## we need points without noise to confirm
        ## object coordinates dont have noise, only image coordinates
        #validation_objectPoints = np.copy(objectPoints_des)
        #validation_imagePoints =  np.copy(objectPoints_des)

        Xo = np.copy(validation_objectPoints[
            [0, 1, 3], :])  #without the z coordinate (plane)
        Xi = np.copy(validation_imagePoints)

        geometric_distance_list.append(geometric_distance_points(Xo, Xi, Hdes))
        H_error_list.append(np.sqrt(np.sum(np.abs(H_cam - Hdes)**2)))