Пример #1
0
    def __init__(self, site):
        self.tc = client.TaskClient(('127.0.0.1', 10113))
        self.rc = client.MultiEngineClient(('127.0.0.1', 10105))
        self.rc.execute(fetchParse)

        self.allLinks = []
        self.linksWorking = {}
        self.linksDone = {}

        self.site = site
Пример #2
0
def main():
    parser = OptionParser()
    parser.set_defaults(n=100)
    parser.set_defaults(tmin=1)
    parser.set_defaults(tmax=60)
    parser.set_defaults(controller='localhost')
    parser.set_defaults(meport=10105)
    parser.set_defaults(tport=10113)
    
    parser.add_option("-n", type='int', dest='n',
        help='the number of tasks to run')
    parser.add_option("-t", type='float', dest='tmin', 
        help='the minimum task length in seconds')
    parser.add_option("-T", type='float', dest='tmax',
        help='the maximum task length in seconds')
    parser.add_option("-c", type='string', dest='controller',
        help='the address of the controller')
    parser.add_option("-p", type='int', dest='meport',
        help="the port on which the controller listens for the MultiEngine/RemoteController client")
    parser.add_option("-P", type='int', dest='tport',
        help="the port on which the controller listens for the TaskClient client")
    
    (opts, args) = parser.parse_args()
    assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
    
    rc = client.MultiEngineClient((opts.controller, opts.meport))
    tc = client.TaskClient((opts.controller, opts.tport))
    
    rc.block=True
    nengines = len(rc.get_ids())
    rc.execute('from IPython.genutils import time')

    # the jobs should take a random time within a range
    times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
    tasks = [client.Task("time.sleep(%f)"%t) for t in times]
    stime = sum(times)
    
    print "executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines)
    time.sleep(1)
    start = time.time()
    taskids = [tc.run(t) for t in tasks]
    tc.barrier(taskids)
    stop = time.time()

    ptime = stop-start
    scale = stime/ptime
    
    print "executed %.1f secs in %.1f secs"%(stime, ptime)
    print "%.3fx parallel performance on %i engines"%(scale, nengines)
    print "%.1f%% of theoretical max"%(100*scale/nengines)
Пример #3
0
#!/usr/bin/env python
# encoding: utf-8
"""Run a Monte-Carlo options pricer in parallel."""

from ipython1.kernel import client
import numpy as N
from mcpricer import MCOptionPricer

tc = client.TaskClient(('127.0.0.1', 10113))
rc = client.MultiEngineClient(('127.0.0.1', 10105))

# Initialize the common code on the engines
rc.run('mcpricer.py')

# Push the variables that won't change (stock print, interest rate, days and MC paths)
rc.push(dict(S=100.0, r=0.05, days=260, paths=10000))

task_string = """\
op = MCOptionPricer(S,K,sigma,r,days,paths)
op.run()
vp, ap, vc, ac = op.vanilla_put, op.asian_put, op.vanilla_call, op.asian_call
"""

# Create arrays of strike prices and volatilities
K_vals = N.arange(90.0, 110.0, 2.0)
sigma_vals = N.arange(0.02, 0.3, 0.02)

# Submit tasks
taskids = []
for K in K_vals:
    for sigma in sigma_vals: