def create_pairdensity_plot_widget(ls): """Create a pairwise density widget. Parameters ---------- ls : :class:`~lens.Summary` Lens `Summary`. Returns ------- :class:`ipywidgets.Widget` Jupyter widget to explore pairdensity plots. """ numeric_columns = ls._report['column_summary']['_columns'] dropdown1 = widgets.Dropdown(options=numeric_columns, description='First:') dropdown2 = widgets.Dropdown(options=numeric_columns, description='Second:') if len(numeric_columns) > 1: dropdown1.value, dropdown2.value = numeric_columns[:2] plot_area = widgets.HTML() for dropdown in [dropdown1, dropdown2]: dropdown.observe(lambda x: _update_pairdensity_plot( ls, dropdown1, dropdown2, plot_area), names='value', type='change') _update_pairdensity_plot(ls, dropdown1, dropdown2, plot_area) return widgets.VBox([dropdown1, dropdown2, plot_area], padding=PADDING)
def update_dropdown(self, search): ''' Takes a search string as input. If this search string matches the name of any schools in the dataset, returns a dropdown menu containing up to the first twenty results. Initially, the dashboard plots are generated for the first matching school (to illustrate the output of this plot). If the user selects a different school from this dropdown menu, the dashboard plots are generated for the selected school. ''' clear_output() schools = self.search_function(search) if len(schools) > 1: self.plot_school(schools[0]) select_from = interactive( self.plot_school, school=widgets.Dropdown(options=schools, description='Select school to plot: ')) self.container.children = [self.Search, select_from] if len(schools) == 1: self.plot_school(schools[0]) select_from = interactive( self.plot_school, school=widgets.Dropdown(options=schools, description='Select school to plot: ')) self.container.children = [self.Search, select_from] if len(schools) == 0: print '{} not found- please search for a different school'.format( self.Search.value) select_from = interactive( self.plot_school, school=widgets.Dropdown(options=schools, description='Select school to plot: ')) self.container.children = [self.Search, select_from]
def EvenOdd(): funcs = { "cos(x)": np.cos, "cos(2x)": cos2, "cos(2x)": cos2, "sin(x)": np.sin, "x^2": quad, "Odd Square": oddSquare, "Even Square": evenSquare } f1_drop = widgets.Dropdown(options=funcs) f2_drop = widgets.Dropdown(options=funcs) sym_check = widgets.Checkbox(value=False, description="Check Symmetry") area_check = widgets.Checkbox(value=False, description="Integration Region") display( widgets.VBox([ widgets.HBox([f1_drop, f2_drop, sym_check, area_check]), widgets.interactive_output( symmetryCheck, { 'f1': f1_drop, 'f2': f2_drop, "showSym": sym_check, "showArea": area_check }) ]))
def __init__(self): # retrieve list of vehicle makes query = session.query(Vehicle.make).distinct() self.makes = pd.read_sql(query.statement, query.session.bind) self.makes.sort_values('make', inplace=True) self.accidents1 = None # create widgets self.make1 = widgets.Dropdown(options=self.makes.make.values, description='Make:', disabled=False) self.model1 = widgets.Dropdown(description='Model:', disabled=False) self.year1 = widgets.Dropdown(description='Start Year:', disabled=False) self.year2 = widgets.Dropdown(description='End Year:', disabled=False) self.run = widgets.Button(description='Run', disabled=True) # connect widgets to commands self.make1.observe(self.update_model1, "value") self.model1.observe(self.update_year1, "value") self.year1.observe(self.update_year2, "value") self.run.on_click(self.get_accidents) display( VBox([ HBox([self.make1]), HBox([self.model1]), HBox([self.year1, self.year2]), HBox([self.run]) ]))
def _create_widgets_for_vis_args(self): """ Create the widgets that are necessary for adjusting the visualization parameters of this special visualizer. Returns ------- a dict mapping keyword argument names of the PIC visualizer to the jupyter widgets responsible for adjusting those values. """ self.species = widgets.Dropdown(description="Species", options=["e"], value='e') self.species_filter = widgets.Dropdown(description="Species_filter", options=['all'], value="all") self.ps = widgets.Dropdown(description="ps", options=['ypy'], value='ypy') return { 'species': self.species, 'species_filter': self.species_filter, 'ps': self.ps }
def _build_inst_form(self): imager_config = read_json(os.path.join(os.environ['pandeia_refdata'], 'wfirst', 'wfirstimager', 'config.json')) ifu_config = read_json(os.path.join(os.environ['pandeia_refdata'], 'wfirst', 'wfirstifu', 'config.json')) self.inst_select = widgets.Dropdown( description="Instrument:", options=['Imager'], value='Imager' ) im_filters = imager_config['filters'] im_readmodes = imager_config['readmodes'] im_subarrays = imager_config['subarrays'] self.filt = widgets.Dropdown( description="Filter:", options=im_filters ) self.readmode = widgets.Dropdown( description="Readmode:", options=im_readmodes ) self.subarray = widgets.Dropdown( description="Sub-array:", options=im_subarrays, ) return widgets.VBox([ self.inst_select, self.filt, self.readmode, self.subarray, ])
def explaining(data, rf, X_train, sov_lab_encoder, le, feat_key): from ipywidgets import widgets from IPython.display import display, clear_output, Markdown def on_button_clicked(b): with output: clear_output() per1n = list(data.columns).index(per1.value) per2n = list(data.columns).index(per2.value) # print('Números de periodos:' + '[' + str(per1n) + ',' + str(per2n) + ']') display(Markdown('Explicación de resultados:')) explain_tree(data, [per1n,per2n], rf, X_train, sov_lab_encoder, le , feat_key) button = widgets.Button(description="Explicar trimestres escogidos") output = widgets.Output() per1 = widgets.Dropdown( options=list(data.columns), description='Periodo 1:') per2 = widgets.Dropdown( options=list(data.columns), description='Periodo 2:') box = widgets.VBox([per1, per2]) display(box) display(button, output) button.on_click(on_button_clicked) # interact(myfunc, Emisor=list(data.index))
def __init__(self, units: Units, unit_index=0): super().__init__() self.units = units self.trials = self.get_trials() if self.trials is None: self.children = [widgets.HTML('No trials present')] return groups = list(self.trials.colnames) rows_controller = widgets.Dropdown(options=[None] + list(groups), description='rows') cols_controller = widgets.Dropdown(options=[None] + list(groups), description='cols') trial_event_controller = make_trial_event_controller(self.trials) unit_controller = widgets.Dropdown(options=range( len(units['spike_times'].data)), value=unit_index, description='unit') before_slider = widgets.FloatSlider(.1, min=0, max=5., description='before (s)', continuous_update=False) after_slider = widgets.FloatSlider(1., min=0, max=5., description='after (s)', continuous_update=False) self.controls = { 'units': fixed(units), 'time_intervals': fixed(self.trials), 'index': unit_controller, 'after': after_slider, 'before': before_slider, 'align_by': trial_event_controller, 'rows_label': rows_controller, 'cols_label': cols_controller } self.children = [ unit_controller, rows_controller, cols_controller, trial_event_controller, before_slider, after_slider, ] self.select_trials() out_fig = interactive_output(raster_grid, self.controls, self.process_controls) self.children = list(self.children) + [out_fig]
def __init__(self, g=nx.DiGraph()): self.graph=g self.add_nodew=widgets.Text(placeholder='Type label of new state') self.add_node_buttonw=widgets.Button(description='Add state') self.del_node_buttonw=widgets.Button(description='Del state') self.node_box=VBox([self.add_nodew, HBox([self.add_node_buttonw, self.del_node_buttonw]) ]) self.select_nodew=widgets.Dropdown(description='Select state') self.add_node_attr_labelw=widgets.Text(placeholder='Type label of new state attribute') self.add_node_attr_valuew=widgets.Text(placeholder='Type value of new state attribute') self.add_node_attr_buttonw=widgets.Button(description='Add attribute to state') self.del_node_attr_buttonw=widgets.Button(description='Del attribute from state') self.node_attr_box=VBox([self.select_nodew, VBox([self.add_node_attr_labelw, self.add_node_attr_valuew]), HBox([self.add_node_attr_buttonw, self.del_node_attr_buttonw]) ]) self.from_nodew = widgets.Dropdown(description='From state', options=[]) self.to_nodew = widgets.Dropdown(description='To state', options=[]) self.from_to_pw=widgets.Text(placeholder = 'Type probability', description = 'Probability', value='0') self.add_edge_buttonw=widgets.Button(description='Add edge') self.del_edge_buttonw=widgets.Button(description='Del edge') self.edge_box=VBox([VBox([self.from_nodew, self.to_nodew]), self.from_to_pw, HBox([self.add_edge_buttonw, self.del_edge_buttonw]) ]) self.add_edge_attr_labelw=widgets.Text(placeholder='Type label of new edge attribute') self.add_edge_attr_valuew=widgets.Text(placeholder='Type value of new edge attribute') self.add_edge_attr_buttonw=widgets.Button(description='Add attribute to edge') self.del_edge_attr_buttonw=widgets.Button(description='Del attribute from edge') self.edge_attr_box=VBox([VBox([self.add_edge_attr_labelw, self.add_edge_attr_valuew]), HBox([self.add_edge_attr_buttonw, self.del_edge_attr_buttonw])]) self.graphw=widgets.Image() self.left_menu = VBox([self.node_box, self.node_attr_box, self.edge_box, self.edge_attr_box]) self.box=HBox([self.left_menu, self.graphw]) display(self.box) self.add_nodew.on_submit(self.add_node) self.del_node_buttonw.on_click(self.del_node) self.add_edge_buttonw.on_click(self.add_edge) self.del_edge_buttonw.on_click(self.del_edge) self.add_node_attr_buttonw.on_click(self.add_node_attr) self.add_edge_attr_buttonw.on_click(self.add_edge_attr)
def bar_dropdown(df): #df = merge_df df_initial = df[(df['Commodity']=='COTTON.') & (df['country'] == "IRAQ")] df2 = df_initial[['year','Export_Value','Import_Value']].groupby(['year']).sum().reset_index() drop_down_1 = widgets.Dropdown( description='Commodity: ', value = 'COTTON.', options=df['Commodity'].unique().tolist() ) drop_down_2 = widgets.Dropdown( options=list(df['country'].unique()), value = 'IRAQ', description='Country:') # Assign an empty figure widget with two traces trace1 = go.Bar(x=df2['year'],y = df2['Export_Value'], name='Export Value') #trace1 trace2 = go.Bar(x=df2['year'], y = df2['Import_Value'], name='Import Value') g = go.FigureWidget(data=[trace1,trace2], layout=go.Layout( title=dict( text='Export vs Import ' ), barmode='group' )) def response(change): filter_list = [i and j for i, j in zip(df['Commodity'] == drop_down_1.value , df['country'] == drop_down_2.value )] temp_df = df[filter_list] y1 = temp_df['Export_Value'] #print(x1) y2 = temp_df['Import_Value'] x1 = temp_df['year'] with g.batch_update(): g.data[0].x = x1 g.data[0].y = y1 g.data[1].x = x1 g.data[1].y = y2 #g.layout.barmode = 'overlay' g.layout.xaxis.title = 'Year' g.layout.yaxis.title = 'value' #g.layout.yaxis = temp_df['year'] drop_down_1.observe(response, names="value") drop_down_2.observe(response, names="value") container = widgets.HBox([drop_down_1, drop_down_2]) # widgets.VBox([container,g]) return g,container
def boop_menu(): input = widgets.Dropdown(description='Input data', options=['Dictionary', 'Pickle', 'Text file'], value='Dictionary') wd = widgets.Dropdown(description='What input data?', options=['Features', 'Trajectories']) plot = widgets.Checkbox(description='Plot', value=True) return widgets.VBox([input, wd, plot])
def award_produced(): global df, fig1, award_name, award_type df = pd.read_sql_query( "Select * from Country c Join Location l on (c.country_id = l.id)", conn) df['e'] = df.iloc[:, 2:31].sum(axis=1) df = df[['country_name', 'iso_2', 'iso_3', 'long', 'lat', 'e']] df = df[df['e'] != 0] df1 = pd.read_sql_query( "SELECT l.country_name, Count(m.country) as count, m.title from Movies m join Country c on (m.country = c.country_id) join Award a on (m.id = a.movie_id) join AwardType at on (a.type = at.id) join Location l on (c.country_id = l.id) where at.name = 'Best Picture' and at.type = 'winner' group by l.country_name", conn) df2 = pd.merge(df1, df, how='left', on='country_name') award_df = pd.read_sql_query("SELECT name, type from AwardType", conn) award_name = widgets.Dropdown( options=list(award_df['name'].unique()), value='Best Picture', description='Award name', ) award_type = widgets.Dropdown( options=list(award_df['type'].unique()), value='winner', description='Award type', ) container = widgets.HBox([award_name, award_type]) fig1 = go.FigureWidget() fig1.add_trace( go.Scatter(x=df2['country_name'], y=df2['count'], yaxis='y2', name='Award Movies', line=dict(color='turquoise'))) fig1.add_trace( go.Bar(x=df2['country_name'], y=df2['e'], name='Produced Movies', marker_color='darkcyan')) fig1.update_layout(title_text='Award Movies and Produced Movies', yaxis=dict(title="Number of Produced Movies"), yaxis2=dict(title="Number of Award Movies", anchor="free", overlaying="y", side="right", position=1), legend=dict(x=1.07)) award_name.observe(response, names="value") award_type.observe(response, names="value") return widgets.VBox([container, fig1])
def raster_grid_widget(units: Units): trials = units.get_ancestor('NWBFile').trials if trials is None: return widgets.HTML('No trials present') groups = infer_categorical_columns(trials) control_widgets = widgets.VBox(children=[]) rows_controller = widgets.Dropdown(options=[None] + list(groups), description='rows: ', layout=Layout(width='95%')) cols_controller = widgets.Dropdown(options=[None] + list(groups), description='cols: ', layout=Layout(width='95%')) control_widgets.children = list( control_widgets.children) + [rows_controller, cols_controller] trial_event_controller = make_trial_event_controller(trials) control_widgets.children = list( control_widgets.children) + [trial_event_controller] unit_controller = int_controller(len(units['spike_times'].data) - 1) control_widgets.children = list( control_widgets.children) + [unit_controller] before_slider = widgets.FloatSlider(.5, min=0, max=5., description='before (s)', continuous_update=False) control_widgets.children = list(control_widgets.children) + [before_slider] after_slider = widgets.FloatSlider(2., min=0, max=5., description='after (s)', continuous_update=False) control_widgets.children = list(control_widgets.children) + [after_slider] controls = { 'units': fixed(units), 'trials': fixed(trials), 'index': unit_controller.children[0], 'after': after_slider, 'before': before_slider, 'align_by': trial_event_controller, 'rows_label': rows_controller, 'cols_label': cols_controller } out_fig = widgets.interactive_output(raster_grid, controls) vbox = widgets.VBox(children=[control_widgets, out_fig]) return vbox
def __init__(self, cluster): self.cluster = cluster applications = self.cluster.get_applications() name_list = [] for application in applications: name_list.append(application.get_information().name.replace( 'fabric:/', '')) self.application_selector = widgets.Dropdown( options=name_list, description='Application:', disabled=False) self.service_selector = widgets.Dropdown(description='Service:', disabled=False) self.dictionary_selector = widgets.Dropdown(description='Dictionary:', disabled=False) self.partition_key_entry = widgets.Text(placeholder='Partition A', description='Optional Key', disabled=False) self.partition_guid_entry = widgets.Text( placeholder='00000000-0000-0000-0000-000000000000', description='Optional ID:', disabled=False) self.query_entry = widgets.Text(placeholder='$top=1', description='Query:', disabled=False) self.query_button = widgets.Button( description='Query', disabled=False, button_style= 'success', # 'success', 'info', 'warning', 'danger' or '' tooltip='Query', icon='check') self.query_button.on_click(self.try_query) self.query_results = widgets.Output( layout={'border': '1px solid black'}) self.application_selector.observe(self.create_application) self.service_selector.observe(self.create_service) self.dictionary_selector.observe(self.create_dictionary) display(self.application_selector) display(self.service_selector) display(self.dictionary_selector) print('Query your dictionary') display(self.partition_key_entry) display(self.partition_guid_entry) display(self.query_entry) display(self.query_button) display(self.query_results) if (len(name_list) > 0): self.create_application(self.application_selector)
def __init__(self, dynamic_table: DynamicTable, group_by=None, window=None, start_discard_rows=None): """ Parameters ---------- dynamic_table group_by window: None or bool, """ super().__init__(dynamic_table) groups = self.get_groups() self.discard_rows = start_discard_rows self.limit_bit = widgets.BoundedIntText(value=50, min=0, max=99999, disabled=True, layout=Layout(max_width='70px')) self.limit_bit.observe(self.limit_bit_observer) self.limit_cb = widgets.Checkbox(description='limit', style={'description_width': 'initial'}, disabled=True, indent=False, layout=Layout(max_width='70px')) self.limit_cb.observe(self.limit_cb_observer) self.order_dd = widgets.Dropdown(options=[None] + list(groups), description='order by', layout=Layout(max_width='120px'), style={'description_width': 'initial'}) self.order_dd.observe(self.order_dd_observer) self.ascending_dd = widgets.Dropdown(options=['ASC', 'DESC'], disabled=True, layout=Layout(max_width='70px')) self.ascending_dd.observe(self.ascending_dd_observer) range_controller_max = min(30, self.nitems) if window is None: self.range_controller = RangeController(0, self.nitems, start_value=(0, range_controller_max), dtype='int', description='units', orientation='vertical') self.range_controller.observe(self.range_controller_observer) self.window = self.range_controller.value elif window is False: self.window = (0, self.nitems) self.range_controller = widgets.HTML('') self.group_sm = widgets.SelectMultiple(layout=Layout(max_width='100px'), disabled=True, rows=1) self.group_sm.observe(self.group_sm_observer) if group_by is None: self.group_dd = widgets.Dropdown(options=[None] + list(groups), description='group by', style={'description_width': 'initial'}, layout=Layout(width='90%')) self.group_dd.observe(self.group_dd_observer) else: self.group_dd = None self.set_group_by(group_by) self.children = self.get_children() self.layout = Layout(width='280px') self.update_value()
def __init__(self, instrument, mode): self.container = widgets.VBox(width="100%", background_color="#CCCCCC") self.instrument = instrument self.instrument.set_mode(mode) self.instrument.get_apertures() self.aper_box = widgets.HBox(padding='10px', width="100%") self.aperture = widgets.Dropdown(description="Aperture:", options=self.instrument.apertures) self.aper_box.children = [self.aperture] self.on_aperture_change(dummy) self.inst_box = widgets.HBox(padding='10px', width="100%") self.filt = widgets.Dropdown(description="Filter:", options=self.instrument.filters) self.disp = widgets.Dropdown(description="Disperser:", options=self.instrument.dispersers) self.inst_box.children = [self.filt, self.disp] self.det_box = widgets.HBox(padding='10px', width="100%") self.ngroups = widgets.BoundedIntText(description="Groups: ", min=3, max=999, value=6, width=30) self.nints = widgets.BoundedIntText(description="Integrations: ", min=1, max=999, value=1, width=30) self.nexps = widgets.BoundedIntText(description="Exposures: ", min=1, max=999, value=1, width=30) self.det_box.children = [self.ngroups, self.nints, self.nexps] self.advanced = widgets.VBox(width="100%", background_color="#CCCCCC") self.readmode = widgets.Dropdown(description="Readmode:", options=self.instrument.readmodes, value='medium8') self.subarray = widgets.Dropdown(description="Sub-array:", options=self.instrument.subarrays, value='1024x1024') self.advanced.children = [self.readmode, self.subarray] self.advanced_drop = widgets.Accordion(children=[self.advanced]) self.advanced_drop.set_title(0, "ADVANCED") self.advanced_drop.selected_index = None self.container.children = [ self.aper_box, self.inst_box, self.det_box, self.advanced_drop ] self.aperture.observe(self.on_aperture_change)
def __init__(self): self.all_years_data = self.read_all_years_data() self.expenditure_options = self.build_expenditure_dicts() self.groupby_options = self.build_groupby_dicts() w = interactive(self.make_boxplot, expenditure=widgets.Dropdown(options=self.expenditure_options,value='Total',description='Expenditure category:'), groupby_feature=widgets.Dropdown(options=self.groupby_options,value='Title_1',description='Group schools by feature:'), normalized=widgets.Checkbox(description='Plot expenditure as percent of total:', value=False)) w.border_color = 'red' w.border_style = 'dotted' w.border_width = 3 display(w)
def __init__(self, Notebook): super(Plot_Evolution_Observable, self).__init__(Notebook) self.widget_Xobs = widgets.Dropdown(options=[None], value=None, description='x-axis:', disabled=True) self.widget_Yobs = widgets.Dropdown(options=[None], value=None, description='y-axis:', disabled=True) self.widget_replot_observable = widgets.Button(description="Plot", disabled=True) self.notebook.dependencies_dict["seed"].append(self)
def __init__(self, path=tumblrsPath): self.path = path self.AC = AccountCollection(path) self.A = self.AC[random.randint(0, len(self.AC))] self.accountSelector = widgets.Dropdown( options=self.AC.names, value=self.A.name, description='Account:', ) self.tagsSelector = widgets.Dropdown( options=[f'{len(self.A)} None'] + self.A.sortedTags(count=True), value=f'{len(self.A)} None', description='tags:', ) self.typesSelector = widgets.RadioButtons( options=self.A.postTypes, value=self.A.currentType, description='Post type:', ) self.postSlider = widgets.IntSlider(min=0, max=len(self.A) - 1, value=0, description=str(len(self.A)) + ' posts') self.mainCaption = widgets.HTML(value=self.A(0)) self.nextButton = widgets.Button(description="Next") self.previousButton = widgets.Button(description="Previous") self.tagSearchEnable = widgets.Button(description="Enable tag search") self.globalTagSelector = widgets.RadioButtons( options=['None'], value='None', description='Global tag filter:', disabled=True, display=False, ) self.controls = HBox([ VBox([ HBox([self.accountSelector, self.tagsSelector]), HBox([self.postSlider, self.previousButton, self.nextButton]) ]), self.typesSelector ])
def __init__(self, vizapp, filename=None): self._vizapp = vizapp self.mostable = None self.mostable_dir = None self.data = None self.html = None self.current_cutout = None # Create File Menu self._menu_bar_file = widgets.Dropdown( options=['File', 'Load', 'Save'], value='File', description='', layout=widgets.Layout(width='10em'), ) self._menu_bar_file.observe(self._on_change_menu_bar_file) self._menu_bar = widgets.HBox([self._menu_bar_file]) # Create Navigation Bar self._current_slit = widgets.Dropdown( options=[], description='Slit', layout=widgets.Layout(width='20em'), ) self._current_slit.observe(self._on_change_current_slit) self._next_button = widgets.Button(description="Next") self._next_button.on_click(self._on_next) self._back_button = widgets.Button(description="Back") self._back_button.on_click(self._on_back) self._nav_bar = widgets.HBox( [self._current_slit, self._back_button, self._next_button]) self._table = MOSVizTable(session=self._vizapp.glue_app.session) self._mos_widget = MOSVizWidget(session=self._vizapp.glue_app.session) self._viewer_box = widgets.VBox([self._mos_widget, self._table.show()]) self._main_box = widgets.Box([ widgets.VBox([self._nav_bar, self._table.show(), self._mos_widget]) ]) if filename: self._vizapp.glue_app.load_data(filename)
def make_dropdown_widget(cls, description='Description', options=['Label 1', 'Label 2'], value='Label 1', file_path=None, layout=Layout(), handler=None): "Return a Dropdown widget with specified `handler`." dd = widgets.Dropdown(description=description, options=options, value=value, layout=layout) if file_path is not None: dd.file_path = file_path if handler is not None: dd.observe(handler, names=['value']) return dd
def riemann_plot_pplane(ql=(10.0, -5.0), qr=(40.0, 5.0), rho=2.0, bulk=1.0): """Plots interactive riemann solution with time dependence and phase plane plot.""" # Create plot function for interact pp_plot = full_riemann_solution_plot_fixed(ql, qr, rho, bulk) # Declare all widget sliders t_widget = widgets.FloatSlider(value=0, min=0.0, max=1.0, description='$t$') which_char_widget = widgets.Dropdown(options=[None, 1, 2], description='Characs.') # Set up interactive GUI interact_gui = widgets.HBox([t_widget, which_char_widget]) # Define interactive widget and run GUI ppwidget = interact(pp_plot, t=t_widget, which_char=which_char_widget) try: ppwidget.widget.close() display(interact_gui) display(ppwidget.widget.out) except: pass
def show_image_series(image_series: ImageSeries, neurodata_vis_spec: dict): if len(image_series.data.shape) == 3: return show_grayscale_image_series(image_series, neurodata_vis_spec) def show_image(index=0, mode='rgb'): fig, ax = plt.subplots(subplot_kw={'xticks': [], 'yticks': []}) image = image_series.data[index] if mode == 'bgr': image = image[:, :, ::-1] ax.imshow(image, cmap='gray', aspect='auto') fig.show() return fig2widget(fig) slider = widgets.IntSlider(value=0, min=0, max=image_series.data.shape[0] - 1, orientation='horizontal', continuous_update=False, description='index') mode = widgets.Dropdown(options=('rgb', 'bgr'), layout=Layout(width='200px'), description='mode') controls = {'index': slider, 'mode': mode} out_fig = widgets.interactive_output(show_image, controls) vbox = widgets.VBox(children=[out_fig, slider, mode]) return vbox
def DrawDNNWeights(fac, datasetName, methodName="DNN"): m = GetMethodObject(fac, datasetName, methodName) if m == None: return None try: net = GetDeepNetwork(str(m.GetWeightFileName()), True) except AttributeError: print( "STANDARD architecture not supported! If you want to use this function you must use CPU or GPU architecture" ) numOfLayers = len(net["layers"]) options = [] vals = [] for layer in xrange(numOfLayers): options.append(str(layer) + "->" + str(layer + 1)) vals.append(layer) selectLayer = widgets.Dropdown(options=options, value=options[0], description='Layer') def drawWrapper(e): CreateWeightHist(net, selectLayer.value) pass button = widgets.Button(description="Draw", font_weight="bold", font_size="16") button.on_click(drawWrapper) box = widgets.HBox([selectLayer, button]) display(box)
def __init__(self, text, correct, *wrong, sonst=False, inst=None): self.selection = "" self.richtig = correct def makeAnswers(correct, wrong): allAnsw = ["Keine der Alternativen"] + wrong allAnsw.append(correct) allAnsw.sort() return allAnsw allAnsw = makeAnswers(correct, list(wrong)) textbox = widgets.HTML(value='<h4 style="font-size:14px;">{}</h4>'.format(text)) instbox = widgets.HTML(value='<i>{}</i>'.format(inst), layout=widgets.Layout(justify_content="center")) answer = widgets.Dropdown(options = allAnsw, value= allAnsw[0], description="Antwort:", layout={'width': '500px'}) button = widgets.Button(description="Korrekt?",layout=widgets.Layout(width="250px")) super().__init__(children=[textbox, instbox, answer, button]) def on_change_drop(change): if change['type'] == 'change' and change['name']=='value': self.selection = change['new'] button.style.button_color = None answer.observe(on_change_drop) def on_button_clicked(b): if self.selection == self.richtig: b.style.button_color = 'lightgreen' else: b.style.button_color = 'red' button.on_click(on_button_clicked)
def make_trial_event_controller(trials, layout=None, multiple=False): """Controller for which reference to use (e.g. start_time) when making time-aligned averages""" trial_events = ["start_time"] if not np.all(np.isnan(trials["stop_time"].data)): trial_events.append("stop_time") trial_events += [ x.name for x in trials.columns if (("_time" in x.name) and (x.name not in ("start_time", "stop_time"))) ] kwargs = {} if layout is not None: kwargs.update(layout=layout) if multiple: trial_event_controller = widgets.SelectMultiple( options=trial_events, value=["start_time"], description='align to:', disabled=False, **kwargs) else: trial_event_controller = widgets.Dropdown(options=trial_events, value="start_time", description="align to: ", **kwargs) return trial_event_controller
def __init__(self, xlim=(-1.2, 1.2), ylim=(-1.2, 1.2), data=None): self.xlim = xlim self.ylim = ylim input_x = np.arange(xlim[0], xlim[1], 0.1) input_y = np.arange(ylim[0], ylim[1], 0.1) self.input_x_matrix, self.input_y_matrix = np.meshgrid( input_x, input_y) self.inputs_xy = np.concatenate( (self.input_x_matrix.flatten()[:, np.newaxis], self.input_y_matrix.flatten()[:, np.newaxis]), axis=1) self.activation_functions_dict = { 'Linear': linear, 'Sigmoid': sigmoid, 'Hyperbolic tangent': htan, 'Gaussian': gaussian } self.data = data if len(data) > 0: self.c1_i = data[:, 2] > 0 self.c2_i = data[:, 2] < 0 self.error = [] self.ax_line = None self.ax_im = None weight_x_slider = widgets.FloatSlider( value=0.5, min=-2.0, max=2.0, step=0.01, description='Weight x:', ) weight_y_slider = widgets.FloatSlider( value=0.5, min=-2.0, max=2.0, step=0.01, description='Weight y:', ) bias_slider = widgets.FloatSlider( value=0.0, min=-2.0, max=2.0, step=0.01, description='Bias:', ) activation_function_list = widgets.Dropdown( options={ list(self.activation_functions_dict.keys())[i]: i for i in range(len(self.activation_functions_dict)) }, value=1, description='Activation function:', ) self.controls = { 'weight_x': weight_x_slider, 'weight_y': weight_y_slider, 'bias': bias_slider, 'activation_function_index': activation_function_list }
def make_dropdown_widget(options:Collection, value, handler:Callable, img_idx:Optional[int]=None, description='', layout=Layout(width='auto')) -> widgets.Dropdown: "Return a Dropdown widget with specified `handler`." dd = widgets.Dropdown(description=description, options=options, value=value, layout=layout) dd.observe(handler, names='value') if img_idx is not None: dd.img_idx = img_idx return dd
def create_platform_product_gui(platforms, products): """ Description: ----- """ # Create widgets platform_sel = widgets.Dropdown(options=platforms, values=platforms) product_sel = widgets.Dropdown(options=products, values=products) # Display form display(widgets.Label('Platform: '), platform_sel) display(widgets.Label('Product: '), product_sel) return [platform_sel, product_sel]
def retrieve_parameters(self): if self.uniqueness: list_of_input_files = glob.glob( os.path.join(self.working_dir, '*' + self.dominant_extension)) list_of_input_files.sort() self.result = self.Result(list_files=list_of_input_files, ext=self.dominant_extension, uniqueness=True) else: list_of_maj_ext = [ _ext for _ext in self.counter_extension.keys() if self.counter_extension[_ext] == self.dominant_number ] box = widgets.HBox([ widgets.Label("Select Extension to work with", layout=widgets.Layout(width='20%')), widgets.Dropdown(options=list_of_maj_ext, layout=widgets.Layout(width='20%'), value=list_of_maj_ext[0]) ]) display(box) self.dropdown_ui = box.children[1]