Пример #1
0
    def __init__(self, value, type='Float', min=1, max=10, step=1, **kwargs):

        self.value = float(value)
        description = kwargs[
            'name'] if 'no_name' in kwargs and kwargs['no_name'] else 'value'
        self.__slider = FloatSlider(value,
                                    min=min,
                                    max=max,
                                    step=step,
                                    description=description,
                                    continuous_update=False)
        # self.__min_ipt = FloatText(min, description='min')
        # self.__max_ipt = FloatText(max, description='max')
        # self.__step_ipt = BoundedFloatText(step, description='step', min=0.01, max=1, step=step)

        self.__slider.observe(self.__on_slider_changed, names='value')
        # self.__min_ipt.observe(self.__on_min_changed, names='value')
        # self.__max_ipt.observe(self.__on_max_changed, names='value')
        # self.__step_ipt.observe(self.__on_step_changed, names='value')

        kwargs['children'] = [
            self.__slider,
            # self.__min_ipt,
            # self.__max_ipt,
            # self.__step_ipt
        ]
        super().__init__(**kwargs)
Пример #2
0
def init(dummy):
    global series
    series = simulate_series(simulation_data)
    p = interact(plot_data,
                 rho_0=FloatSlider(min=0.01, max=0.2, step=0.01, value=0.01),
                 f=IntSlider(0, 0, 10))
    return series
Пример #3
0
    def __init__(self, min, max, value=0, description=""):
        # 0 inputs, 1 output.
        VectorSystem.__init__(self, 0, 1)
        self.slider = FloatSlider(value=value,
                                  description=description,
                                  min=min,
                                  max=max,
                                  continuous_update=True)

        if get_ipython() is not None:
            display(self.slider)
Пример #4
0
def init(dummy):
    global series
    global initialised
    series = simulate_series(simulation_data)

    if initialised == False:
        p = interact(plot_data,
                     rho_0=FloatSlider(min=0.01,
                                       max=0.2,
                                       step=0.01,
                                       value=0.01),
                     f=IntSlider(0, 0, 10))
        initialised = True
Пример #5
0
def create_slider(symbol: sp.Symbol) -> "Slider":
    r"""Create an `int` or `float` slider, depending on Symbol assumptions.

    The description for the slider is rendered as LaTeX from the
    `~sympy.core.symbol.Symbol` name.

    >>> create_slider(sp.Symbol("a"))
    FloatSlider(value=0.0, description='\\(a\\)')
    >>> create_slider(sp.Symbol("n0", integer=True))
    IntSlider(value=0, description='\\(n_{0}\\)')
    """
    description = Rf"\({sp.latex(symbol)}\)"
    if symbol.is_integer:
        return IntSlider(description=description)
    return FloatSlider(description=description)
Пример #6
0
    def __init__(self,
                 index,
                 ambient=[80, 80, 80],
                 specular=[40, 40, 40],
                 emission=[0, 0, 0],
                 diffuse=1,
                 transparency=0,
                 shininess=0.2,
                 **kwargs):
        self.index = index
        self.ambient = ambient
        self.specular = specular
        self.emission = emission
        self.diffuse = diffuse
        self.transparency = transparency
        self.shininess = shininess
        self.__index = BoundedIntText(value=index, description='index', min=0)
        self.__ambient = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in ambient),
            description='ambient')
        self.__specular = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in specular),
            description='specular')
        self.__emission = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in emission),
            description='emission')
        self.__diffuse = FloatSlider(value=diffuse,
                                     description='diffuse',
                                     min=0,
                                     max=3,
                                     continuous_update=False)
        self.__transparency = FloatSlider(value=transparency,
                                          description='transparency',
                                          min=0,
                                          max=1,
                                          continuous_update=False)
        self.__shininess = FloatSlider(value=shininess,
                                       description='shininess',
                                       min=0,
                                       max=1,
                                       continuous_update=False)
        self.__index.observe(self.__on_index_changed, names='value')
        self.__ambient.observe(self.__on_ambient_changed, names='value')
        self.__specular.observe(self.__on_specular_changed, names='value')
        self.__emission.observe(self.__on_emission_changed, names='value')
        self.__diffuse.observe(self.__on_diffuse_changed, names='value')
        self.__transparency.observe(self.__on_transparency_changed,
                                    names='value')
        self.__shininess.observe(self.__on_shininess_changed, names='value')

        kwargs['children'] = [
            self.__index, self.__ambient, self.__specular, self.__emission,
            self.__diffuse, self.__transparency, self.__shininess
        ]

        super().__init__(**kwargs)
Пример #7
0
def interactive():
    """ interactive call of `main`
    """
    interact(
        main,
        alpha=FloatSlider(min=0.01,
                          max=24,
                          step=0.01,
                          value=0.4,
                          description='Birth Rate of Prey',
                          style=style,
                          layout=slider_layout),
        beta=FloatSlider(min=0.01,
                         max=24,
                         step=0.01,
                         value=0.04,
                         description='Death Rate of Prey',
                         style=style,
                         layout=slider_layout),
        gamma=FloatSlider(min=0.01,
                          max=24,
                          step=0.01,
                          value=0.02,
                          description='Birth Rate of Predator',
                          style=style,
                          layout=slider_layout),
        delta=FloatSlider(min=0.01,
                          max=24,
                          step=0.01,
                          value=2.,
                          description='Death Rate of Predator',
                          style=style,
                          layout=slider_layout),
        y0_0=FloatSlider(min=0.01,
                         max=200,
                         step=0.01,
                         value=105.,
                         description='Initial population Prey',
                         style=style,
                         layout=slider_layout),
        y0_1=FloatSlider(min=0.01,
                         max=100,
                         step=0.01,
                         value=8.,
                         description='Initial population Predator',
                         style=style,
                         layout=slider_layout),
        my_range=IntRangeSlider(min=0,
                                max=50,
                                step=1,
                                value=[0, 15],
                                description='time interval',
                                style=style,
                                layout=slider_layout),
    )
Пример #8
0
    def __init__(self,
                 view_pixel_cubes=True,
                 view_coordinates=True,
                 fig_size=(12, 8),
                 coordinates_history=False):
        self._fig_size = fig_size
        self._view_pixel_cubes = view_pixel_cubes
        self._view_coordinates = view_coordinates
        self._coordinates_history = coordinates_history

        # Fields
        self.fig = self.canvas = self.axes = None

        # Make widgets
        rgb_widgets = []
        for text in ["Red", "Green", "Blue"]:
            rgb_widgets.append(
                FloatSlider(
                    value=0.0,
                    min=0,
                    max=1.0,
                    step=0.01,
                    description='{}:'.format(text),
                    disabled=False,
                    continuous_update=False,
                    orientation='horizontal',
                    readout=True,
                    readout_format='.2f',
                ))
        self.rgb_widgets = rgb_widgets

        # Make widget box
        self.rgb_box = VBox(rgb_widgets)

        # Assign pixel-viewer to sliders events
        for val in self.rgb_box.children:
            val.observe(self.show_pixel)

        # Get RGB-values
        self.rgb = [val.value for val in self.rgb_widgets]

        # Start when widgets are displayed
        self.rgb_box.on_displayed(self.show_pixel)
Пример #9
0
def init(button):
    global series
    global initialised
    series = simulate_series(simulation_data)

    if initialised == False:
        #p = interact(plot_data, rho_0=FloatSlider(min=0.01, max=0.2, step=0.01, value=0.01, continuous_update=False), f=IntSlider(min=0, max=10, step=1, value=0,continuous_update=False))
        interact(plot_data,
                 rho_0=FloatSlider(min=0.01,
                                   max=0.2,
                                   step=0.01,
                                   value=0.01,
                                   continuous_update=False),
                 f=IntSlider(min=0,
                             max=10,
                             step=1,
                             value=0,
                             continuous_update=False))
        button.description = 'Reset'
        initialised = True
Пример #10
0
def mandelbrot_plot(f=None, **kwds):
    r"""
    Plot of the Mandelbrot set for a one parameter family of polynomial maps.

    The family `f_c(z)` must have parent ``R`` of the
    form ``R.<z,c> = CC[]``.

    REFERENCE:

    [Dev2005]_

    INPUT:

    - ``f`` -- map (optional - default: ``z^2 + c``), polynomial family used to
      plot the Mandelbrot set.

    - ``parameter`` -- variable (optional - default: ``c``), parameter variable
      used to plot the Mandelbrot set.

    - ``x_center`` -- double (optional - default: ``-1.0``), Real part of center
      point.

    - ``y_center`` -- double (optional - default: ``0.0``), Imaginary part of
      center point.

    - ``image_width`` -- double (optional - default: ``4.0``), width of image
      in the complex plane.

    - ``max_iteration`` -- long (optional - default: ``500``), maximum number of
      iterations the map ``f_c(z)``.

    - ``pixel_count`` -- long (optional - default: ``500``), side length of
      image in number of pixels.

    - ``base_color`` -- RGB color (optional - default: ``[40, 40, 40]``) color
      used to determine the coloring of set.

    - ``level_sep`` -- long (optional - default: 1) number of iterations
      between each color level.

    - ``number_of_colors`` -- long (optional - default: 30) number of colors
      used to plot image.

    - ``interact`` -- boolean (optional - default: ``False``), controls whether
      plot will have interactive functionality.

    OUTPUT:

    24-bit RGB image of the Mandelbrot set in the complex plane.

    EXAMPLES:

    ::

        sage: mandelbrot_plot()
        500x500px 24-bit RGB image

    ::

        sage: mandelbrot_plot(pixel_count=1000)
        1000x1000px 24-bit RGB image

    ::

        sage: mandelbrot_plot(x_center=-1.11, y_center=0.2283, image_width=1/128, # long time
        ....: max_iteration=2000, number_of_colors=500, base_color=[40, 100, 100])
        500x500px 24-bit RGB image

    To display an interactive plot of the Mandelbrot in the Notebook, set
    ``interact`` to ``True``. (This is only implemented for ``z^2 + c``)::

        sage: mandelbrot_plot(interact=True)
        interactive(children=(FloatSlider(value=0.0, description=u'Real center', max=1.0, min=-1.0, step=1e-05),
        FloatSlider(value=0.0, description=u'Imag center', max=1.0, min=-1.0, step=1e-05),
        FloatSlider(value=4.0, description=u'Width', max=4.0, min=1e-05, step=1e-05),
        IntSlider(value=500, description=u'Iterations', max=1000),
        IntSlider(value=500, description=u'Pixels', max=1000, min=10),
        IntSlider(value=1, description=u'Color sep', max=20, min=1),
        IntSlider(value=30, description=u'# Colors', min=1),
        ColorPicker(value='#ff6347', description=u'Base color'), Output()),
        _dom_classes=(u'widget-interact',))

    ::

        sage: mandelbrot_plot(interact=True, x_center=-0.75, y_center=0.25,
        ....: image_width=1/2, number_of_colors=75)
        interactive(children=(FloatSlider(value=-0.75, description=u'Real center', max=1.0, min=-1.0, step=1e-05),
        FloatSlider(value=0.25, description=u'Imag center', max=1.0, min=-1.0, step=1e-05),
        FloatSlider(value=0.5, description=u'Width', max=4.0, min=1e-05, step=1e-05),
        IntSlider(value=500, description=u'Iterations', max=1000),
        IntSlider(value=500, description=u'Pixels', max=1000, min=10),
        IntSlider(value=1, description=u'Color sep', max=20, min=1),
        IntSlider(value=75, description=u'# Colors', min=1),
        ColorPicker(value='#ff6347', description=u'Base color'), Output()),
        _dom_classes=(u'widget-interact',))

    Polynomial maps can be defined over a multivariate polynomial ring or a
    univariate polynomial ring tower::

        sage: R.<z,c> = CC[]
        sage: f = z^2 + c
        sage: mandelbrot_plot(f)
        500x500px 24-bit RGB image

    ::

        sage: B.<c> = CC[]
        sage: R.<z> = B[]
        sage: f = z^5 + c
        sage: mandelbrot_plot(f)
        500x500px 24-bit RGB image

    When the polynomial is defined over a multivariate polynomial ring it is
    necessary to specify the parameter variable (default parameter is ``c``)::

        sage: R.<a,b> = CC[]
        sage: f = a^2 + b^3
        sage: mandelbrot_plot(f, parameter=b)
        500x500px 24-bit RGB image

    Interact functionality is not implemented for general polynomial maps::

        sage: R.<z,c> = CC[]
        sage: f = z^3 + c
        sage: mandelbrot_plot(f, interact=True)
        Traceback (most recent call last):
        ...
        NotImplementedError: Interact only implemented for z^2 + c
    """
    parameter = kwds.pop("parameter", None)
    x_center = kwds.pop("x_center", 0.0)
    y_center = kwds.pop("y_center", 0.0)
    image_width = kwds.pop("image_width", 4.0)
    max_iteration = kwds.pop("max_iteration", None)
    pixel_count = kwds.pop("pixel_count", 500)
    level_sep = kwds.pop("level_sep", 1)
    number_of_colors = kwds.pop("number_of_colors", 30)
    interacts = kwds.pop("interact", False)
    base_color = kwds.pop("base_color", Color('tomato'))
    # Check if user specified maximum number of iterations
    given_iterations = True
    if max_iteration is None:
        # Set default to 500 for z^2 + c map
        max_iteration = 500
        given_iterations = False

    from ipywidgets.widgets import FloatSlider, IntSlider, ColorPicker, interact
    widgets = dict(
        x_center=FloatSlider(min=-1.0,
                             max=1.0,
                             step=EPS,
                             value=x_center,
                             description="Real center"),
        y_center=FloatSlider(min=-1.0,
                             max=1.0,
                             step=EPS,
                             value=y_center,
                             description="Imag center"),
        image_width=FloatSlider(min=EPS,
                                max=4.0,
                                step=EPS,
                                value=image_width,
                                description="Width"),
        max_iteration=IntSlider(min=0,
                                max=1000,
                                value=max_iteration,
                                description="Iterations"),
        pixel_count=IntSlider(min=10,
                              max=1000,
                              value=pixel_count,
                              description="Pixels"),
        level_sep=IntSlider(min=1,
                            max=20,
                            value=level_sep,
                            description="Color sep"),
        color_num=IntSlider(min=1,
                            max=100,
                            value=number_of_colors,
                            description="# Colors"),
        base_color=ColorPicker(value=Color(base_color).html_color(),
                               description="Base color"),
    )

    if f is None:
        # Quadratic map f = z^2 + c

        if interacts:
            return interact(**widgets).widget(fast_mandelbrot_plot)

        else:
            return fast_mandelbrot_plot(x_center, y_center, image_width,
                                        max_iteration, pixel_count, level_sep,
                                        number_of_colors, base_color)

    else:
        if parameter is None:
            c = var('c')
            parameter = c

        P = f.parent()

        if P.base_ring() is CC or P.base_ring() is CDF:
            if is_FractionField(P):
                raise NotImplementedError(
                    "coefficients must be polynomials in the parameter")
            gen_list = list(P.gens())
            parameter = gen_list.pop(gen_list.index(parameter))
            variable = gen_list.pop()

        elif P.base_ring().base_ring() is CC or P.base_ring().base_ring(
        ) is CDF:
            if is_FractionField(P.base_ring()):
                raise NotImplementedError(
                    "coefficients must be polynomials in the parameter")
            phi = P.flattening_morphism()
            f = phi(f)
            gen_list = list(f.parent().gens())
            parameter = gen_list.pop(gen_list.index(parameter))
            variable = gen_list.pop()

        elif P.base_ring() in FunctionFields():
            raise NotImplementedError(
                "coefficients must be polynomials in the parameter")

        else:
            raise ValueError("base ring must be a complex field")

        if f == variable**2 + parameter:
            # Quadratic map f = z^2 + c
            if interacts:
                return interact(**widgets).widget(fast_mandelbrot_plot)

            else:
                return fast_mandelbrot_plot(x_center, y_center, image_width,
                                            max_iteration, pixel_count,
                                            level_sep, number_of_colors,
                                            base_color)
        else:
            if interacts:
                raise NotImplementedError(
                    "Interact only implemented for z^2 + c")
            else:
                # Set default of max_iteration to 50 for general polynomial maps
                # This prevents the function from being very slow by default
                if not given_iterations:
                    max_iteration = 50

                # Mandelbrot of General Polynomial Map
                return polynomial_mandelbrot(f, parameter, x_center, y_center, \
                 image_width, max_iteration, pixel_count, level_sep, \
                 number_of_colors, base_color)
Пример #11
0
    slider = plt.show()


interact(main,
         initial_salary=IntSlider(min=0,
                                  max=25000,
                                  step=500,
                                  value=15000,
                                  description='Initial Salary',
                                  style=style,
                                  layout=slider_layout),
         savings_ratio=FloatSlider(min=0,
                                   max=1,
                                   step=0.01,
                                   value=0.2,
                                   description='Savings Ratio',
                                   style=style,
                                   layout=slider_layout),
         extraordinary_expenses=FloatSlider(
             min=0,
             max=1,
             step=0.005,
             description='Extraordinary Expenses',
             style=style,
             value=0.3,
             layout=slider_layout),
         fixed_costs=IntSlider(min=1,
                               max=1000,
                               step=1,
                               value=100,
Пример #12
0
class MaterialEditor(_Editor):
    """TODO: Add docstring here
    """
    _model_name = Unicode('MaterialEditorModel').tag(sync=True)
    _view_name = Unicode('MaterialEditorView').tag(sync=True)

    __text = None
    __index = None
    __ambient = None
    __specular = None
    __emission = None
    __diffuse = None
    __transparency = None
    __shininess = None
    __validator = None

    index = Int().tag(sync=False)
    ambient = List().tag(sync=False)
    specular = List().tag(sync=False)
    emission = List().tag(sync=False)
    diffuse = Float().tag(sync=False)
    transparency = Float().tag(sync=False)
    shininess = Float().tag(sync=False)

    def __init__(self,
                 index,
                 ambient=[80, 80, 80],
                 specular=[40, 40, 40],
                 emission=[0, 0, 0],
                 diffuse=1,
                 transparency=0,
                 shininess=0.2,
                 **kwargs):
        self.index = index
        self.ambient = ambient
        self.specular = specular
        self.emission = emission
        self.diffuse = diffuse
        self.transparency = transparency
        self.shininess = shininess
        self.__index = BoundedIntText(value=index, description='index', min=0)
        self.__ambient = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in ambient),
            description='ambient')
        self.__specular = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in specular),
            description='specular')
        self.__emission = ColorPicker(
            value='#' + ''.join(format(v, "02x") for v in emission),
            description='emission')
        self.__diffuse = FloatSlider(value=diffuse,
                                     description='diffuse',
                                     min=0,
                                     max=3,
                                     continuous_update=False)
        self.__transparency = FloatSlider(value=transparency,
                                          description='transparency',
                                          min=0,
                                          max=1,
                                          continuous_update=False)
        self.__shininess = FloatSlider(value=shininess,
                                       description='shininess',
                                       min=0,
                                       max=1,
                                       continuous_update=False)
        self.__index.observe(self.__on_index_changed, names='value')
        self.__ambient.observe(self.__on_ambient_changed, names='value')
        self.__specular.observe(self.__on_specular_changed, names='value')
        self.__emission.observe(self.__on_emission_changed, names='value')
        self.__diffuse.observe(self.__on_diffuse_changed, names='value')
        self.__transparency.observe(self.__on_transparency_changed,
                                    names='value')
        self.__shininess.observe(self.__on_shininess_changed, names='value')

        kwargs['children'] = [
            self.__index, self.__ambient, self.__specular, self.__emission,
            self.__diffuse, self.__transparency, self.__shininess
        ]

        super().__init__(**kwargs)

    def __rgb_to_list(self, rgb):
        return [255, 0, 0] if len(rgb) != 7 else [
            int(v, 16) for v in [rgb[1:][i:i + 2] for i in range(0, 6, 2)]
        ]

    def __on_index_changed(self, change):
        self.index = self.__index.value

    def __on_ambient_changed(self, change):
        self.ambient = self.__rgb_to_list(self.__ambient.value)

    def __on_specular_changed(self, change):
        self.specular = self.__rgb_to_list(self.__specular.value)

    def __on_emission_changed(self, change):
        self.emission = self.__rgb_to_list(self.__emission.value)

    def __on_diffuse_changed(self, change):
        self.diffuse = self.__diffuse.value

    def __on_transparency_changed(self, change):
        self.transparency = self.__transparency.value

    def __on_shininess_changed(self, change):
        self.shininess = self.__shininess.value
Пример #13
0
def init():
    series = simulate_series(simulation_data)
    p = interact(plot_data,
                 rho_0=FloatSlider(min=0.01, max=0.2, step=0.01, value=0.01),
                 f=IntSlider(0, 0, 10))
Пример #14
0
class FloatEditor(_Editor):
    """TODO: Add docstring here
    """
    _model_name = Unicode('FloatEditorModel').tag(sync=True)
    _view_name = Unicode('FloatEditorView').tag(sync=True)

    __slider = None
    __min_ipt = None
    __max_ipt = None
    __step_ipt = None
    __type = ''

    value = Float(0).tag(sync=False)
    min = Float(0).tag(sync=False)
    max = Float(0).tag(sync=False)
    step = Float(0).tag(sync=False)

    def __init__(self, value, type='Float', min=1, max=10, step=1, **kwargs):

        self.value = float(value)
        description = kwargs[
            'name'] if 'no_name' in kwargs and kwargs['no_name'] else 'value'
        self.__slider = FloatSlider(value,
                                    min=min,
                                    max=max,
                                    step=step,
                                    description=description,
                                    continuous_update=False)
        # self.__min_ipt = FloatText(min, description='min')
        # self.__max_ipt = FloatText(max, description='max')
        # self.__step_ipt = BoundedFloatText(step, description='step', min=0.01, max=1, step=step)

        self.__slider.observe(self.__on_slider_changed, names='value')
        # self.__min_ipt.observe(self.__on_min_changed, names='value')
        # self.__max_ipt.observe(self.__on_max_changed, names='value')
        # self.__step_ipt.observe(self.__on_step_changed, names='value')

        kwargs['children'] = [
            self.__slider,
            # self.__min_ipt,
            # self.__max_ipt,
            # self.__step_ipt
        ]
        super().__init__(**kwargs)

    # def __on_min_changed(self, change):
    #     if self.__min_ipt.value < self.__slider.max:
    #         self.__slider.min = self.__min_ipt.value
    #     else:
    #         self.__min_ipt.value = self.__slider.max - self.__step_ipt.value
    #     self.min = self.__min_ipt.value

    # def __on_max_changed(self, change):
    #     if self.__max_ipt.value > self.__slider.min:
    #         self.__slider.max = self.__max_ipt.value
    #     else:
    #         self.__max_ipt.value = self.__slider.min + self.__step_ipt.value
    #     self.max = self.__max_ipt.value

    # def __on_step_changed(self, change):
    #     self.__slider.step = self.__step_ipt.value
    #     self.step = self.__step_ipt.value

    def __on_slider_changed(self, change):
        self.value = self.__slider.value
    x = np.arange(-3, 3, delta)
    y = np.ones_like(x) * y0
    z = (x**2) + np.sin(y**2)
    ax_3d.plot(x, y, z, color='green', linestyle='--', linewidth=2)

    # change the viewing angle of the 3D plot
    ax_3d.view_init(55, 65)
    plt.draw()

    # show the plot
    plt.show()


# try it out
interact(plot_surface_problem3,
         x0=FloatSlider(min=-3, max=3, step=0.1, continuous_update=False),
         y0=FloatSlider(min=-3, max=3, step=0.1, continuous_update=False))

# ## 3.4) What is the partial derivative with respect to x?
# What is the partial derivative of $f(x, y)$ with respect to $x$?
#
# Answer:
#
# $$
# \frac{\partial}{\partial x} f(x, y) = 2x
# $$
#

# ## 3.5) Plot the partial derivative with respect to x
# Now plot the partial derivative $\partial f/\partial x$ (in 2D).
Пример #16
0
def floatslider(*args, **kwargs):
    s = FloatSlider(*args, readout_format='.3f', **kwargs)
    s.layout.width = '70%'
    return s
Пример #17
0
 def test_continuous_update(self) -> None:
     slider = FloatSlider()
     assert slider.continuous_update is True
     slider.continuous_update = False
     assert slider.continuous_update is False
Пример #18
0
def mandelbrot_plot(x_center=-1.0,
                    y_center=0.0,
                    image_width=4.0,
                    max_iteration=500,
                    pixel_count=500,
                    base_color='steelblue',
                    iteration_level=1,
                    number_of_colors=30,
                    interact=False):
    r"""
    Interactive plot of the Mandelbrot set for the map `Q_c(z) = z^2 + c`.

    ALGORITHM:

    Let each pixel in the image be a point `c \in \mathbb{C}` and define the
    map `Q_c(z) = z^2 + c`. If `|Q_{c}^{k}(c)| > 2` for some `k \geq 0`, it
    follows that `Q_{c}^{n}(c) \to \infty`. Let `N` be the maximum number of
    iterations. Compute the first `N` points on the orbit of `0` under `Q_c`.
    If for any `k < N`, `|Q_{c}^{k}(0)| > 2`, we stop the iteration and assign
    a color to the point `c` based on how quickly `0` escaped to infinity under
    iteration of `Q_c`. If `|Q_{c}^{i}(0)| \leq 2` for all `i \leq N`, we assume
    `c` is in the Mandelbrot set and assign the point `c` the color black.

    REFERENCE:

    [Dev2005]_

    INPUT:

    - ``x_center`` -- double (optional - default: ``-1.0``), Real part
      of center point.

    - ``y_center`` -- double (optional - default: ``0.0``), Imaginary part
      of center point.

    - ``image_width`` -- double (optional - default: ``4.0``), width of
      image in the complex plane.

    - ``max_iteration`` -- long (optional - default: ``500``), maximum number
      of iterations the map ``Q_c(z)``.

    - ``pixel_count`` -- long (optional - default: ``500``), side length
      of image in number of pixels.

    - ``base_color`` -- RGB color (optional - default: ``'steelblue'``) color
      used to determine the coloring of set (any valid input for Color).

    - ``iteration_level`` -- long (optional - default: 1) number of iterations
      between each color level.

    - ``number_of_colors`` -- long (optional - default: 30) number of colors
      used to plot image.

    - ``interact`` -- boolean (optional - default: ``False``), controls
      whether plot will have interactive functionality.

    OUTPUT:

    24-bit RGB image of the Mandelbrot set in the complex plane.

    EXAMPLES:

    ::

        sage: mandelbrot_plot()
        500x500px 24-bit RGB image

    ::

        sage: mandelbrot_plot(pixel_count=1000)
        1000x1000px 24-bit RGB image

    ::

        sage: mandelbrot_plot(x_center=-1.11, y_center=0.2283, image_width=1/128,
        ....: max_iteration=2000, number_of_colors=500, base_color=[40, 100, 100])
        500x500px 24-bit RGB image

    To display an interactive plot of the Mandelbrot set in the Jupyter
    Notebook, set ``interact`` to ``True``::

        sage: mandelbrot_plot(interact=True)
        interactive(children=(FloatSlider(value=-1.0, description=u'Real center'...

    ::

        sage: mandelbrot_plot(interact=True, x_center=-0.75, y_center=0.25,
        ....:     image_width=1/2, number_of_colors=75)
        interactive(children=(FloatSlider(value=-0.75, description=u'Real center'...
    """
    base_color = Color(base_color)

    if interact:
        from ipywidgets.widgets import FloatSlider, IntSlider, ColorPicker, interact
        widgets = dict(
            x_center=FloatSlider(min=-1.0,
                                 max=1.0,
                                 step=EPS,
                                 value=x_center,
                                 description="Real center"),
            y_center=FloatSlider(min=-1.0,
                                 max=1.0,
                                 step=EPS,
                                 value=y_center,
                                 description="Imag center"),
            image_width=FloatSlider(min=EPS,
                                    max=4.0,
                                    step=EPS,
                                    value=image_width,
                                    description="Image width"),
            max_iteration=IntSlider(min=0,
                                    max=600,
                                    value=max_iteration,
                                    description="Iterations"),
            pixel_count=IntSlider(min=10,
                                  max=600,
                                  value=pixel_count,
                                  description="Pixels"),
            level_sep=IntSlider(min=1,
                                max=20,
                                value=iteration_level,
                                description="Color sep"),
            color_num=IntSlider(min=1,
                                max=100,
                                value=number_of_colors,
                                description="# Colors"),
            base_color=ColorPicker(value=base_color.html_color(),
                                   description="Base color"),
        )
        return interact(**widgets).widget(fast_mandelbrot_plot)

    return fast_mandelbrot_plot(x_center, y_center, image_width, max_iteration,
                                pixel_count, iteration_level, number_of_colors,
                                base_color)
Пример #19
0
        initialised = True


###############################################################################

style = {'description_width': '30%'}

nn_widget = IntSlider(min=100,
                      max=2000,
                      step=50,
                      value=1000,
                      description='network size',
                      style=style)
np_widget = FloatSlider(min=0.001,
                        max=0.05,
                        step=0.001,
                        value=0.006,
                        description='network density',
                        style=style)

D_widget = IntSlider(min=10,
                     max=100,
                     step=1,
                     value=50,
                     description='D - number of disease related genes',
                     style=style)
p_widget = FloatSlider(min=0.0,
                       max=1.0,
                       step=0.05,
                       value=0.3,
                       description='p - clustering',
                       style=style)
Пример #20
0
                             value=0,
                             continuous_update=False))
        button.description = 'Reset'
        initialised = True


###############################################################################

nn_widget = IntSlider(min=100,
                      max=2000,
                      step=100,
                      value=1000,
                      description='network size')
np_widget = FloatSlider(min=0.005,
                        max=0.05,
                        step=0.005,
                        value=0.005,
                        description='network density')

D_widget = IntSlider(min=10,
                     max=100,
                     step=1,
                     value=50,
                     description='D - number of disease related genes')
p_widget = FloatSlider(min=0.0,
                       max=1.0,
                       step=0.1,
                       value=0.5,
                       description='p - clustering')

P_widget = IntSlider(min=5,
Пример #21
0
def julia_plot(f=None, **kwds):
    r"""
    Plots the Julia set of a given polynomial ``f``. Users can specify whether
    they would like to display the Mandelbrot side by side with the Julia set
    with the ``mandelbrot`` argument. If ``f`` is not specified, this method
    defaults to `f(z) = z^2-1`.

    The Julia set of a polynomial ``f`` is the set of complex numbers `z` for
    which the function `f(z)` is bounded under iteration. The Julia set can
    be visualized by plotting each point in the set in the complex plane.
    Julia sets are examples of fractals when plotted in the complex plane.

    ALGORITHM:

    Let `R_c = \bigl(1 + \sqrt{1 + 4|c|}\bigr)/2` if the polynomial is of the
    form `f(z) = z^2 + c`; otherwise, let `R_c = 2`.
    For every `p \in \mathbb{C}`, if `|f^{k}(p)| > R_c` for some `k \geq 0`,
    then `f^{n}(p) \to \infty`.  Let `N` be the maximum number of iterations.
    Compute the first `N` points on the orbit of `p` under `f`. If for
    any `k < N`, `|f^{k}(p)| > R_c`, we stop the iteration and assign a color
    to the point `p` based on how quickly `p` escaped to infinity under
    iteration of `f`. If `|f^{i}(p)| \leq R_c` for all `i \leq N`, we assume
    `p` is in the Julia set and assign the point `p` the color black.

    INPUT:

    - ``f`` -- input polynomial (optional - default: ``z^2 - 1``).

    - ``period`` -- list (optional - default: ``None``), returns the Julia set
      for a random `c` value with the given (formal) cycle structure.

    - ``mandelbrot`` -- boolean (optional - default: ``True``), when set to
      ``True``, an image of the Mandelbrot set is appended to the right of the
      Julia set.

    - ``point_color`` -- RGB color (optional - default: ``'tomato'``),
      color of the point `c` in the Mandelbrot set (any valid input for Color).

    - ``x_center`` -- double (optional - default: ``-1.0``), Real part
      of center point.

    - ``y_center`` -- double (optional - default: ``0.0``), Imaginary part
      of center point.

    - ``image_width`` -- double (optional - default: ``4.0``), width of image
      in the complex plane.

    - ``max_iteration`` -- long (optional - default: ``500``), maximum number
      of iterations the map `f(z)`.

    - ``pixel_count`` -- long (optional - default: ``500``), side length of
      image in number of pixels.

    - ``base_color`` -- hex color (optional - default: ``'steelblue'``), color
      used to determine the coloring of set (any valid input for Color).

    - ``level_sep`` -- long (optional - default: 1), number of iterations
      between each color level.

    - ``number_of_colors`` -- long (optional - default: 30), number of colors
      used to plot image.

    - ``interact`` -- boolean (optional - default: ``False``), controls whether
      plot will have interactive functionality.

    OUTPUT:

    24-bit RGB image of the Julia set in the complex plane.

    .. TODO::

        Implement the side-by-side Mandelbrot-Julia plots for general one-parameter families
        of polynomials.

    EXAMPLES:

    The default ``f`` is `z^2 - 1`::

        sage: julia_plot()
        1001x500px 24-bit RGB image

    To display only the Julia set, set ``mandelbrot`` to ``False``::

        sage: julia_plot(mandelbrot=False)
        500x500px 24-bit RGB image

    ::

        sage: R.<z> = CC[]
        sage: f = z^3 - z + 1
        sage: julia_plot(f)
        500x500px 24-bit RGB image

    To display an interactive plot of the Julia set in the Notebook,
    set ``interact`` to ``True``. (This is only implemented for polynomials of
    the form ``f = z^2 + c``)::

        sage: julia_plot(interact=True)
        interactive(children=(FloatSlider(value=-1.0, description=u'Real c'...

        ::

        sage: R.<z> = CC[]
        sage: f = z^2 + 1/2
        sage: julia_plot(f,interact=True)
        interactive(children=(FloatSlider(value=0.5, description=u'Real c'...

    To return the Julia set of a random `c` value with (formal) cycle structure
    `(2,3)`, set ``period = [2,3]``::

        sage: julia_plot(period=[2,3])
        1001x500px 24-bit RGB image

    To return all of the Julia sets of `c` values with (formal) cycle structure
    `(2,3)`::

        sage: period = [2,3] # not tested
        ....: R.<c> = QQ[]
        ....: P.<x,y> = ProjectiveSpace(R,1)
        ....: f = DynamicalSystem([x^2+c*y^2, y^2])
        ....: L = f.dynatomic_polynomial(period).subs({x:0,y:1}).roots(ring=CC)
        ....: c_values = [k[0] for k in L]
        ....: for c in c_values:
        ....:     julia_plot(c)

    Polynomial maps can be defined over a polynomial ring or a fraction field,
    so long as ``f`` is polynomial::

        sage: R.<z> = CC[]
        sage: f = z^2 - 1
        sage: julia_plot(f)
        1001x500px 24-bit RGB image

    ::

        sage: R.<z> = CC[]
        sage: K = R.fraction_field(); z = K.gen()
        sage: f = z^2-1
        sage: julia_plot(f)
        1001x500px 24-bit RGB image

    Interact functionality is not implemented if the polynomial is not of the
    form `f = z^2 + c`::

        sage: R.<z> = CC[]
        sage: f = z^3 + 1
        sage: julia_plot(f, interact=True)
        Traceback (most recent call last):
        ...
        NotImplementedError: The interactive plot is only implemented for ...
    """

    # extract keyword arguments
    period = kwds.pop("period", None)
    mandelbrot = kwds.pop("mandelbrot", True)
    point_color = kwds.pop("point_color", 'tomato')
    x_center = kwds.pop("x_center", 0.0)
    y_center = kwds.pop("y_center", 0.0)
    image_width = kwds.pop("image_width", 4.0)
    max_iteration = kwds.pop("max_iteration", 500)
    pixel_count = kwds.pop("pixel_count", 500)
    base_color = kwds.pop("base_color", 'steelblue')
    level_sep = kwds.pop("level_sep", 1)
    number_of_colors = kwds.pop("number_of_colors", 30)
    interacts = kwds.pop("interact", False)

    f_is_default_after_all = None

    if period:  # pick a random c with the specified period
        R = PolynomialRing(CC, 'c')
        c = R.gen()
        x, y = ProjectiveSpace(R, 1, 'x,y').gens()
        F = DynamicalSystem([x**2 + c * y**2, y**2])
        L = F.dynatomic_polynomial(period).subs({x: 0, y: 1}).roots(ring=CC)
        c = L[randint(0, len(L) - 1)][0]

    base_color = Color(base_color)
    point_color = Color(point_color)

    EPS = 0.00001

    if f is not None and period is None:  # f user-specified and no period given

        # try to coerce f to live in a polynomial ring
        S = PolynomialRing(CC, names='z')
        z = S.gen()
        try:
            f_poly = S(f)
        except TypeError:
            R = f.parent()
            if not (R.is_integral_domain() and
                    (CC.is_subring(R) or CDF.is_subring(R))):
                raise ValueError('Given `f` must be a complex polynomial.')
            else:
                raise NotImplementedError(
                    'Julia sets not implemented for rational functions.')

        if (f_poly - z * z) in CC:  # f is specified and of the form z^2 + c.
            f_is_default_after_all = True
            c = f_poly - z * z
        else:  # f is specified and not of the form z^2 + c
            if interacts:
                raise NotImplementedError(
                    "The interactive plot is only implemented for "
                    "polynomials of the form f = z^2 + c.")
            else:
                return general_julia(f_poly, x_center, y_center, image_width,
                                     max_iteration, pixel_count, level_sep,
                                     number_of_colors, base_color)

    # otherwise we can use fast_julia_plot for z^2 + c
    if f_is_default_after_all or f is None or period is not None:

        # specify default c = -1 value if f and period were not specified
        if not f_is_default_after_all and period is None:
            c = -1

        c = CC(c)
        c_real = c.real()
        c_imag = c.imag()

        if interacts:  # set widgets
            from ipywidgets.widgets import FloatSlider, IntSlider, \
                                           ColorPicker, interact
            widgets = dict(
                c_real=FloatSlider(min=-2.0,
                                   max=2.0,
                                   step=EPS,
                                   value=c_real,
                                   description="Real c"),
                c_imag=FloatSlider(min=-2.0,
                                   max=2.0,
                                   step=EPS,
                                   value=c_imag,
                                   description="Imag c"),
                x_center=FloatSlider(min=-1.0,
                                     max=1.0,
                                     step=EPS,
                                     value=x_center,
                                     description="Real center"),
                y_center=FloatSlider(min=-1.0,
                                     max=1.0,
                                     step=EPS,
                                     value=y_center,
                                     description="Imag center"),
                image_width=FloatSlider(min=EPS,
                                        max=4.0,
                                        step=EPS,
                                        value=image_width,
                                        description="Width"),
                max_iteration=IntSlider(min=0,
                                        max=1000,
                                        value=max_iteration,
                                        description="Iterations"),
                pixel_count=IntSlider(min=10,
                                      max=1000,
                                      value=pixel_count,
                                      description="Pixels"),
                level_sep=IntSlider(min=1,
                                    max=20,
                                    value=level_sep,
                                    description="Color sep"),
                color_num=IntSlider(min=1,
                                    max=100,
                                    value=number_of_colors,
                                    description="# Colors"),
                base_color=ColorPicker(value=base_color.html_color(),
                                       description="Base color"),
            )
            if mandelbrot:
                widgets["point_color"] = ColorPicker(
                    value=point_color.html_color(), description="Point color")
                return interact(**widgets).widget(julia_helper)
            else:
                return interact(**widgets).widget(fast_julia_plot)
        elif mandelbrot:  # non-interactive with mandelbrot
            return julia_helper(c_real, c_imag, x_center, y_center,
                                image_width, max_iteration, pixel_count,
                                level_sep, number_of_colors, base_color,
                                point_color)
        else:  # non-interactive without mandelbrot
            return fast_julia_plot(c_real, c_imag, x_center, y_center,
                                   image_width, max_iteration, pixel_count,
                                   level_sep, number_of_colors, base_color)
Пример #22
0
                                       step=0.01,
                                       value=0.01,
                                       continuous_update=False),
                     f=IntSlider(min=0,
                                 max=10,
                                 step=1,
                                 value=0,
                                 continuous_update=False))
        button_init.description = 'Reset'
        initialised = True


###############################################################################

nn_widget = IntSlider(min=100, max=2000, step=100, value=1000)
np_widget = FloatSlider(min=0.005, max=0.05, step=0.005, value=0.005)

D_widget = IntSlider(min=10, max=100, step=1, value=50)
p_widget = FloatSlider(min=0.0, max=1.0, step=0.1, value=0.5)

P_widget = IntSlider(min=5, max=50, step=5, value=20)
A_widget = FloatSlider(min=0.0, max=1.0, step=0.1, value=0.5)

params = interact(set_params,
                  nn=nn_widget,
                  np=np_widget,
                  D=D_widget,
                  p=p_widget,
                  P=P_widget,
                  A=A_widget)
Пример #23
0
 def test_step(self) -> None:
     slider = FloatSlider(min=5, max=7)
     assert slider.step == 0.1
     slider.min = 6
     assert slider.step == 0.1
Пример #24
0
 def test_value(self) -> None:
     slider = FloatSlider(min=5, max=7, step=0.1)
     assert slider.value == slider.min
Пример #25
0
def julia_plot(c=-1,
               x_center=0.0,
               y_center=0.0,
               image_width=4.0,
               max_iteration=500,
               pixel_count=500,
               base_color='steelblue',
               iteration_level=1,
               number_of_colors=50,
               point_color='yellow',
               interact=False,
               mandelbrot=True,
               period=None):
    r"""
    Plots the Julia set of a given complex `c` value. Users can specify whether
    they would like to display the Mandelbrot side by side with the Julia set.

    The Julia set of a given `c` value is the set of complex numbers for which
    the function `Q_c(z)=z^2+c` is bounded under iteration. The Julia set can
    be visualized by plotting each point in the set in the complex plane.
    Julia sets are examples of fractals when plotted in the complex plane.

    ALGORITHM:

    Define the map `Q_c(z) = z^2 + c` for some `c \in \mathbb{C}`. For every
    `p \in \mathbb{C}`, if `|Q_{c}^{k}(p)| > 2` for some `k \geq 0`,
    then `Q_{c}^{n}(p) \to \infty`. Let `N` be the maximum number of iterations.
    Compute the first `N` points on the orbit of `p` under `Q_c`. If for
    any `k < N`, `|Q_{c}^{k}(p)| > 2`, we stop the iteration and assign a color
    to the point `p` based on how quickly `p` escaped to infinity under
    iteration of `Q_c`. If `|Q_{c}^{i}(p)| \leq 2` for all `i \leq N`, we assume
    `p` is in the Julia set and assign the point `p` the color black.

    INPUT:

    - ``c`` -- complex (optional - default: ``-1``), complex point `c` that
      determines the Julia set.

    - ``period`` -- list (optional - default: ``None``), returns the Julia set
      for a random `c` value with the given (formal) cycle structure.

    - ``mandelbrot`` -- boolean (optional - default: ``True``), when set to
      ``True``, an image of the Mandelbrot set is appended to the right of the
      Julia set.

    - ``point_color`` -- RGB color (optional - default: ``'tomato'``),
      color of the point `c` in the Mandelbrot set (any valid input for Color).

    - ``x_center`` -- double (optional - default: ``-1.0``), Real part
      of center point.

    - ``y_center`` -- double (optional - default: ``0.0``), Imaginary part
      of center point.

    - ``image_width`` -- double (optional - default: ``4.0``), width of image
      in the complex plane.

    - ``max_iteration`` -- long (optional - default: ``500``), maximum number
      of iterations the map `Q_c(z)`.

    - ``pixel_count`` -- long (optional - default: ``500``), side length of
      image in number of pixels.

    - ``base_color`` -- RGB color (optional - default: ``'steelblue'``), color
      used to determine the coloring of set (any valid input for Color).

    - ``iteration_level`` -- long (optional - default: 1), number of iterations
      between each color level.

    - ``number_of_colors`` -- long (optional - default: 30), number of colors
      used to plot image.

    - ``interact`` -- boolean (optional - default: ``False``), controls whether
      plot will have interactive functionality.

    OUTPUT:

    24-bit RGB image of the Julia set in the complex plane.

    EXAMPLES::

        sage: julia_plot()
        1001x500px 24-bit RGB image

    To display only the Julia set, set ``mandelbrot`` to ``False``::

        sage: julia_plot(mandelbrot=False)
        500x500px 24-bit RGB image

    To display an interactive plot of the Julia set in the Notebook,
    set ``interact`` to ``True``::

        sage: julia_plot(interact=True)
        interactive(children=(FloatSlider(value=-1.0, description=u'Real c'...

    To return the Julia set of a random `c` value with (formal) cycle structure
    `(2,3)`, set ``period = [2,3]``::

        sage: julia_plot(period=[2,3])
        1001x500px 24-bit RGB image

    To return all of the Julia sets of `c` values with (formal) cycle structure
    `(2,3)`::

        sage: period = [2,3] # not tested
        ....: R.<c> = QQ[]
        ....: P.<x,y> = ProjectiveSpace(R,1)
        ....: f = DynamicalSystem([x^2+c*y^2, y^2])
        ....: L = f.dynatomic_polynomial(period).subs({x:0,y:1}).roots(ring=CC)
        ....: c_values = [k[0] for k in L]
        ....: for c in c_values:
        ....:     julia_plot(c)
    """
    if period is not None:
        R = PolynomialRing(QQ, 'c')
        c = R.gen()
        x, y = ProjectiveSpace(R, 1, 'x,y').gens()
        f = DynamicalSystem([x**2 + c * y**2, y**2])
        L = f.dynatomic_polynomial(period).subs({x: 0, y: 1}).roots(ring=CC)
        c = L[randint(0, len(L) - 1)][0]

    c = CC(c)
    c_real = c.real()
    c_imag = c.imag()

    base_color = Color(base_color)
    point_color = Color(point_color)

    if interact:
        from ipywidgets.widgets import FloatSlider, IntSlider, ColorPicker, interact
        widgets = dict(
            c_real=FloatSlider(min=-2.0,
                               max=2.0,
                               step=EPS,
                               value=c_real,
                               description="Real c"),
            c_imag=FloatSlider(min=-2.0,
                               max=2.0,
                               step=EPS,
                               value=c_imag,
                               description="Imag c"),
            x_center=FloatSlider(min=-1.0,
                                 max=1.0,
                                 step=EPS,
                                 value=x_center,
                                 description="Real center"),
            y_center=FloatSlider(min=-1.0,
                                 max=1.0,
                                 step=EPS,
                                 value=y_center,
                                 description="Imag center"),
            image_width=FloatSlider(min=EPS,
                                    max=4.0,
                                    step=EPS,
                                    value=image_width,
                                    description="Image width"),
            max_iteration=IntSlider(min=0,
                                    max=600,
                                    value=max_iteration,
                                    description="Iterations"),
            pixel_count=IntSlider(min=10,
                                  max=600,
                                  value=pixel_count,
                                  description="Pixels"),
            level_sep=IntSlider(min=1,
                                max=20,
                                value=iteration_level,
                                description="Color sep"),
            color_num=IntSlider(min=1,
                                max=100,
                                value=number_of_colors,
                                description="# Colors"),
            base_color=ColorPicker(value=base_color.html_color(),
                                   description="Base color"),
        )
        if mandelbrot:
            widgets["point_color"] = ColorPicker(
                value=point_color.html_color(), description="Point color")
            return interact(**widgets).widget(julia_helper)
        else:
            return interact(**widgets).widget(fast_julia_plot)

    if mandelbrot:
        return julia_helper(c_real, c_imag, x_center, y_center, image_width,
                            max_iteration, pixel_count, iteration_level,
                            number_of_colors, base_color, point_color)

    else:
        return fast_julia_plot(c_real, c_imag, x_center, y_center, image_width,
                               max_iteration, pixel_count, iteration_level,
                               number_of_colors, base_color)