Пример #1
0
 def test_clip(self):
     """Test clip function."""
     cube = Cube(np.array([-10, 0, 10]))
     cube.add_dim_coord(
         iris.coords.DimCoord(
             np.arange(3),
             standard_name='time',
             units=Unit('days since 1950-01-01 00:00:00',
                        calendar='gregorian'),
         ),
         0,
     )
     # Cube needs to be copied, since it is modified in-place and test cube
     # should not change.
     assert_array_equal(
         clip(cube.copy(), 0, None).data, np.array([0, 0, 10]))
     assert_array_equal(
         clip(cube.copy(), None, 0).data, np.array([-10, 0, 0]))
     assert_array_equal(clip(cube.copy(), -1, 2).data, np.array([-1, 0, 2]))
     # Masked cube TODO
     # No parameters specified
     with self.assertRaises(ValueError):
         clip(cube, None, None)
     # Maximum lower than minimum
     with self.assertRaises(ValueError):
         clip(cube, 10, 8)
Пример #2
0
class Test_merge_cube(tests.IrisTest):
    def setUp(self):
        self.cube1 = Cube([1, 2, 3], "air_temperature", units="K")
        self.cube1.add_aux_coord(AuxCoord([0], "height", units="m"))

    def test_pass(self):
        cube2 = self.cube1.copy()
        cube2.coord("height").points = [1]
        result = CubeList([self.cube1, cube2]).merge_cube()
        self.assertIsInstance(result, Cube)

    def test_fail(self):
        cube2 = self.cube1.copy()
        cube2.rename("not air temperature")
        with self.assertRaises(iris.exceptions.MergeError):
            CubeList([self.cube1, cube2]).merge_cube()

    def test_empty(self):
        with self.assertRaises(ValueError):
            CubeList([]).merge_cube()

    def test_single_cube(self):
        result = CubeList([self.cube1]).merge_cube()
        self.assertEqual(result, self.cube1)
        self.assertIsNot(result, self.cube1)

    def test_repeated_cube(self):
        with self.assertRaises(iris.exceptions.MergeError):
            CubeList([self.cube1, self.cube1]).merge_cube()
Пример #3
0
    def resolve_wind_components(
        speed: Cube, angle: Cube, adj: ndarray
    ) -> Tuple[Cube, Cube]:
        """
        Perform trigonometric reprojection onto x and y axes

        Args:
            speed:
                Cube containing wind speed data
            angle:
                Cube containing wind directions as angles from true North
            adj:
                2D array of wind direction angle adjustments in radians, to
                convert zero reference from true North to grid North.
                Broadcast automatically if speed and angle cubes have extra
                dimensions.

        Returns:
            - Cube containing wind vector component in the positive
              x-direction u_speed
            - Cube containing wind vector component in the positive
              y-direction v_speed
        """
        angle.convert_units("radians")
        angle.data += adj

        # output vectors should be pointing "to" not "from"
        if "wind_from_direction" in angle.name():
            angle.data += np.pi
        sin_angle = np.sin(angle.data)
        cos_angle = np.cos(angle.data)
        uspeed = np.multiply(speed.data, sin_angle)
        vspeed = np.multiply(speed.data, cos_angle)
        return [speed.copy(data=uspeed), speed.copy(data=vspeed)]
Пример #4
0
 def setUp(self):
     """Create a cube with a single non-zero point."""
     data = np.zeros((2, 2, 2))
     data[0][:][:] = 1.0
     data[1][:][:] = 2.0
     cube = Cube(data,
                 standard_name="precipitation_amount",
                 units="kg m^-2 s^-1")
     cube.add_dim_coord(
         DimCoord(np.linspace(-45.0, 45.0, 2), 'latitude', units='degrees'),
         1)
     cube.add_dim_coord(
         DimCoord(np.linspace(120, 180, 2), 'longitude', units='degrees'),
         2)
     time_origin = "hours since 1970-01-01 00:00:00"
     calendar = "gregorian"
     tunit = Unit(time_origin, calendar)
     cube.add_dim_coord(DimCoord([402192.5, 402193.5], "time", units=tunit),
                        0)
     self.cube = cube
     new_scalar_coord = iris.coords.AuxCoord(1,
                                             long_name='dummy_scalar_coord',
                                             units='no_unit')
     cube_with_scalar = cube.copy()
     cube_with_scalar.add_aux_coord(new_scalar_coord)
     self.cube_with_scalar = cube_with_scalar
Пример #5
0
    def process(self, precip_cubes: Union[Cube, List[Cube]],
                orographic_enhancement_cube: Cube) -> CubeList:
        """Apply orographic enhancement by modifying the input fields. This can
        include either adding or deleting the orographic enhancement component
        from the input precipitation fields.

        Args:
            precip_cubes:
                Cube or iterable (list, CubeList or tuple) of cubes containing
                the input precipitation fields.
            orographic_enhancement_cube:
                Cube containing the orographic enhancement fields.

        Returns:
            CubeList of precipitation rate cubes that have been updated
            using orographic enhancement.
        """
        if isinstance(precip_cubes, iris.cube.Cube):
            precip_cubes = iris.cube.CubeList([precip_cubes])

        updated_cubes = iris.cube.CubeList([])
        for precip_cube in precip_cubes:
            oe_cube = self._select_orographic_enhancement_cube(
                precip_cube, orographic_enhancement_cube.copy())
            cube = self._apply_orographic_enhancement(precip_cube, oe_cube)
            cube = self._apply_minimum_precip_rate(precip_cube, cube)
            updated_cubes.append(cube)
        return updated_cubes
Пример #6
0
    def make_percentile_cube(self, cube: Cube) -> Cube:
        """Returns a cube with the same metadata as the sample cube
        but with an added percentile dimension.

        Args:
            cube:
                Cube to copy meta data from.

        Returns:
            Cube like input but with added percentiles coordinate.
            Each slice along this coordinate is identical.
        """
        pctcubelist = iris.cube.CubeList()
        pct_coord_name = "percentile"
        for pct in self.percentiles:
            pctcube = cube.copy()
            pctcube.add_aux_coord(
                iris.coords.DimCoord(np.float32(pct),
                                     long_name=pct_coord_name,
                                     units="%"))
            pctcubelist.append(pctcube)
        result = pctcubelist.merge_cube()
        # If percentile coord is not already a dimension, promote it.
        # This is required when self.percentiles is length 1.
        if result.coord_dims(pct_coord_name) == ():
            result = iris.util.new_axis(result, scalar_coord=pct_coord_name)
        return result
Пример #7
0
    def _update_metadata(cube: Cube) -> Cube:
        """
        Modify the meta data of input cube to resemble a Nowcast of lightning
        probability.

        1. Rename to "probability_of_rate_of_lightning_above_threshold"

        2. Remove "threshold" coord
        (or causes iris.exceptions.CoordinateNotFoundError)

        3. Discard all cell_methods

        Args:
            cube:
                An input cube

        Returns:
            Output cube - a copy of input cube with meta-data relating to
            a Nowcast of lightning probability.
            The data array will be a copy of the input cube.data
        """
        new_cube = cube.copy()
        new_cube.rename("probability_of_rate_of_lightning_above_threshold")
        threshold_coord = find_threshold_coordinate(new_cube)
        new_cube.remove_coord(threshold_coord)
        new_cube.cell_methods = None
        return new_cube
Пример #8
0
    def setUp(self):
        """Set up the test inputs."""
        self.time_0 = datetime.datetime(2017, 11, 1, 3)
        self.time_extra = datetime.datetime(2017, 11, 1, 6)
        self.time_1 = datetime.datetime(2017, 11, 1, 9)
        self.npoints = 10
        data_time_0 = np.ones((self.npoints, self.npoints))
        data_time_1 = np.ones((self.npoints, self.npoints)) * 7

        cube_template = Cube(data_time_0, 'air_temperature', 'K')
        cube_template.add_dim_coord(
            DimCoord(np.linspace(-45.0, 45.0, self.npoints),
                     'latitude',
                     units='degrees'), 0)
        cube_template.add_dim_coord(
            DimCoord(np.linspace(120, 180, self.npoints),
                     'longitude',
                     units='degrees'), 1)
        time_origin = "seconds since 1970-01-01 00:00:00"
        calendar = "gregorian"
        tunit = Unit(time_origin, calendar)

        self.cube_time_0 = cube_template
        self.cube_time_1 = cube_template.copy(data=data_time_1)
        self.cube_time_0.add_aux_coord(
            DimCoord(self.time_0.timestamp(), "time", units=tunit))
        self.cube_time_0.add_aux_coord(
            DimCoord(0, "forecast_period", units="hours"))
        self.cube_time_1.add_aux_coord(
            DimCoord(self.time_1.timestamp(), "time", units=tunit))
        self.cube_time_1.add_aux_coord(
            DimCoord(6, "forecast_period", units="hours"))
Пример #9
0
    def setUp(self):
        """Create a cube with a single non-zero point."""
        data = np.zeros((2, 2, 2))
        data[0][:][:] = 1.0
        data[1][:][:] = 2.0
        cube = Cube(data,
                    standard_name="precipitation_amount",
                    units="kg m^-2 s^-1")
        cube.add_dim_coord(
            DimCoord(np.linspace(-45.0, 45.0, 2), 'latitude', units='degrees'),
            1)
        cube.add_dim_coord(
            DimCoord(np.linspace(120, 180, 2), 'longitude', units='degrees'),
            2)
        time_origin = "hours since 1970-01-01 00:00:00"
        calendar = "gregorian"
        tunit = Unit(time_origin, calendar)
        cube.add_dim_coord(DimCoord([402192.5, 402193.5], "time", units=tunit),
                           0)
        cube.add_aux_coord(AuxCoord([402190.0, 402191.0],
                                    "forecast_reference_time",
                                    units=tunit),
                           data_dims=0)
        cube.add_aux_coord(AuxCoord([3.0, 4.0], "forecast_period",
                                    units=tunit),
                           data_dims=0)

        self.cube = cube
        new_scalar_coord = iris.coords.AuxCoord(1,
                                                long_name='dummy_scalar_coord',
                                                units='no_unit')
        cube_with_scalar = cube.copy()
        cube_with_scalar.add_aux_coord(new_scalar_coord)
        self.cube_with_scalar = cube_with_scalar
        data_threshold = np.zeros((2, 2, 2, 2))
        data_threshold[:, 0, :, :] = 0.5
        data_threshold[:, 1, :, :] = 0.8
        cube_threshold = Cube(data_threshold,
                              long_name="probability_of_precipitation_amount")
        cube_threshold.add_dim_coord(
            DimCoord([0.4, 1.0], long_name="threshold", units="kg m^-2 s^-1"),
            0)
        cube_threshold.add_dim_coord(
            DimCoord([402192.5, 402193.5], "time", units=tunit), 1)
        cube_threshold.add_dim_coord(
            DimCoord(np.linspace(-45.0, 45.0, 2), 'latitude', units='degrees'),
            2)
        cube_threshold.add_dim_coord(
            DimCoord(np.linspace(120, 180, 2), 'longitude', units='degrees'),
            3)
        cube_threshold.add_aux_coord(AuxCoord([402190.0, 402191.0],
                                              "forecast_reference_time",
                                              units=tunit),
                                     data_dims=0)
        cube_threshold.add_aux_coord(AuxCoord([3.0, 4.0],
                                              "forecast_period",
                                              units=tunit),
                                     data_dims=0)
        cube_threshold.attributes.update({'relative_to_threshold': 'below'})
        self.cube_threshold = cube_threshold
Пример #10
0
    def check_input_cube_dims(self, input_cube: Cube, timezone_cube: Cube) -> None:
        """Ensures input cube has at least three dimensions: time, y, x. Promotes time
        to be the inner-most dimension (dim=-1). Does the same for the timezone_cube
        UTC_offset dimension.

        Raises:
            ValueError:
                If the input cube does not have exactly the expected three coords.
                If the spatial coords on input_cube and timezone_cube do not match.
        """
        expected_coords = ["time"] + [input_cube.coord(axis=n).name() for n in "yx"]
        cube_coords = [coord.name() for coord in input_cube.coords(dim_coords=True)]
        if not all(
            [expected_coord in cube_coords for expected_coord in expected_coords]
        ):
            raise ValueError(
                f"Expected coords on input_cube: time, y, x ({expected_coords})."
                f"Found {cube_coords}"
            )
        enforce_coordinate_ordering(input_cube, ["time"], anchor_start=False)
        self.timezone_cube = timezone_cube.copy()
        enforce_coordinate_ordering(
            self.timezone_cube, ["UTC_offset"], anchor_start=False
        )
        if not spatial_coords_match([input_cube, self.timezone_cube]):
            raise ValueError(
                "Spatial coordinates on input_cube and timezone_cube do not match."
            )
Пример #11
0
    def process(self, cube: Cube) -> Cube:
        """
        Calculate probabilities between thresholds for the input cube

        Args:
            cube:
                Probability cube containing thresholded data (above or below)

        Returns:
            Cube containing probability of occurrence between thresholds
        """
        # if cube has no threshold-type coordinate, raise an error
        try:
            self.thresh_coord = find_threshold_coordinate(cube)
        except CoordinateNotFoundError:
            raise ValueError("Input is not a probability cube "
                             "(has no threshold-type coordinate)")
        self.cube = cube.copy()

        # check input cube units and convert if needed
        original_units = self.thresh_coord.units
        if original_units != self.threshold_units:
            self.cube.coord(self.thresh_coord).convert_units(
                self.threshold_units)

        # extract suitable cube slices
        self.cube_slices = self._slice_cube()

        # generate "between thresholds" probabilities
        output_cube = self._calculate_probabilities()
        self._update_metadata(output_cube, original_units)
        return output_cube
Пример #12
0
    def sum_differences_between_adjacent_grid_squares(
            cube: Cube, thresholded_cubes: CubeList) -> Cube:
        """
        Put the differences back onto the original grid by summing together
        the array with offsets. This covers the fact that the difference
        cubes will result in output on a staggered grid compared with the
        input cube.

        Args:
            cube:
                The cube with the original grid.
            thresholded_cubes:
                Cubelist containing differences between adjacent grid squares
                along x and differences between adjacent grid squares along y,
                which have been thresholded.

        Returns:
            Cube on the original grid with the values from the thresholded
            adjacent grid square difference cubes inserted. The resulting
            values have been restricted to be between 0 and 1.
        """
        threshold_cube_x, threshold_cube_y = thresholded_cubes
        cube_on_orig_grid = cube.copy()
        cube_on_orig_grid.data = np.zeros(cube_on_orig_grid.shape)
        cube_on_orig_grid.data[..., :-1, :] += threshold_cube_y.data
        cube_on_orig_grid.data[..., 1:, :] += threshold_cube_y.data
        cube_on_orig_grid.data[..., :, :-1] += threshold_cube_x.data
        cube_on_orig_grid.data[..., :, 1:] += threshold_cube_x.data
        return cube_on_orig_grid
Пример #13
0
    def maximum_within_vicinity(self, cube: Cube) -> Cube:
        """
        Find grid points where a phenomenon occurs within a defined radius.
        The occurrences within this vicinity are maximised, such that all
        grid points within the vicinity are recorded as having an occurrence.
        For non-binary fields, if the vicinity of two occurrences overlap,
        the maximum value within the vicinity is chosen.
        If a land-mask cube has been supplied, process land and sea points
        separately.

        Args:
            cube:
                Thresholded cube.

        Returns:
            Cube where the occurrences have been spatially spread, so that
            they're equally likely to have occurred anywhere within the
            vicinity defined using the specified radius.
        """
        if self.radius:
            grid_point_radius = distance_to_number_of_grid_cells(
                cube, self.radius)
        elif self.grid_point_radius is not None:
            grid_point_radius = self.grid_point_radius
        else:
            grid_point_radius = 0

        # Convert the grid_point_radius into a number of points along an edge
        # length, including the central point, e.g. grid_point_radius = 1,
        # points along the edge = 3
        grid_points = (2 * grid_point_radius) + 1

        cube_dtype = cube.data.dtype
        cube_fill_value = netCDF4.default_fillvals.get(cube_dtype.str[1:],
                                                       np.inf)

        max_cube = cube.copy()
        unmasked_cube_data = cube.data.copy()
        if np.ma.is_masked(cube.data):
            unmasked_cube_data = cube.data.data.copy()
            unmasked_cube_data[cube.data.mask] = -cube_fill_value
        if self.land_mask_cube:
            max_data = np.empty_like(cube.data)
            for match in (True, False):
                matched_data = unmasked_cube_data.copy()
                matched_data[self.land_mask != match] = -cube_fill_value
                matched_max_data = maximum_filter(matched_data,
                                                  size=grid_points)
                max_data = np.where(self.land_mask == match, matched_max_data,
                                    max_data)
        else:
            # The following command finds the maximum value for each grid point
            # from within a square of length "size"
            max_data = maximum_filter(unmasked_cube_data, size=grid_points)
        if np.ma.is_masked(cube.data):
            # Update only the unmasked values
            max_cube.data.data[~cube.data.mask] = max_data[~cube.data.mask]
        else:
            max_cube.data = max_data
        return max_cube
Пример #14
0
    def setUp(self):
        """Create a cube containing a regular lat-lon grid and other necessary
        ingredients for unit tests."""

        data = np.zeros((20, 20))
        latitudes = np.linspace(-90, 90, 20)
        longitudes = np.linspace(-180, 180, 20)
        latitude = DimCoord(latitudes,
                            standard_name='latitude',
                            units='degrees')
        longitude = DimCoord(longitudes,
                             standard_name='longitude',
                             units='degrees')

        cube = Cube(data,
                    long_name="template",
                    dim_coords_and_dims=[(latitude, 0), (longitude, 1)],
                    units="1")

        orography = cube.copy()
        orography.data[0:10, 0:10] = 2.
        orography.rename('surface_altitude')
        land = cube.copy()
        land.rename('land_binary_mask')
        land.data = land.data + 1

        self.orography = orography
        self.land = land
        self.directory = mkdtemp()
        self.orography_path = os.path.join(self.directory, 'highres_orog.nc')
        self.land_path = os.path.join(self.directory, 'land_mask.nc')
        save_netcdf(orography, self.orography_path)
        save_netcdf(land, self.land_path)

        self.diagnostics = {
            "wind_speed": {
                "diagnostic_name": "wind_speed",
                "extrema": False,
                "filepath": "horizontal_wind_speed_and_direction_at_10m",
                "interpolation_method": "use_nearest",
                "neighbour_finding": {
                    "land_constraint": True,
                    "method": "fast_nearest_neighbour",
                    "vertical_bias": None
                }
            }
        }
Пример #15
0
    def wind_dir_decider(self, where_low_r: ndarray, wdir_cube: Cube) -> None:
        """If the wind direction is so widely scattered that the r value
           is nearly zero then this indicates that the average wind direction
           is essentially meaningless.
           We therefore substitute this meaningless average wind
           direction value for the wind direction calculated from a larger
           sample by smoothing across a neighbourhood of points before
           rerunning the main technique.
           This is invoked rarely (1 : 100 000)

        Args:
            where_low_r:
                Array of boolean values. True where original wind direction
                estimate has low confidence. These points are replaced
                according to self.backup_method
            wdir_cube:
                Contains array of wind direction data (realization, y, x)

        Uses:
            self.wdir_slice_mean:
                Containing average wind direction angle (in degrees).
            self.wdir_complex:
                3D array - wind direction angles from ensembles (in complex).
            self.r_vals_slice.data:
                2D array - Radius taken from average complex wind direction
                angle.
            self.r_thresh:
                Any r value below threshold is regarded as meaningless.
            self.realization_axis:
                Axis to collapse over.
            self.n_realizations:
                Number of realizations available in the plugin. Used to set the
                neighbourhood radius as this is used to adjust the radius again
                in the neighbourhooding plugin.

        Defines:
            self.wdir_slice_mean.data:
                2D array - Wind direction degrees where ambigious values have
                been replaced with data from first ensemble realization.
        """
        if self.backup_method == "neighbourhood":
            # Performs smoothing over a 6km square neighbourhood.
            # Then calculates the mean wind direction.
            child_class = WindDirection(backup_method="first_realization")
            child_class.wdir_complex = self.nbhood(
                wdir_cube.copy(data=self.wdir_complex)).data
            child_class.realization_axis = self.realization_axis
            child_class.wdir_slice_mean = self.wdir_slice_mean.copy()
            child_class.calc_wind_dir_mean()
            improved_values = child_class.wdir_slice_mean.data
        else:
            # Takes realization zero (control member).
            improved_values = wdir_cube.extract(
                iris.Constraint(realization=0)).data

        # If the r-value is low - substitute average wind direction value for
        # the wind direction taken from the first ensemble realization.
        self.wdir_slice_mean.data = np.where(where_low_r, improved_values,
                                             self.wdir_slice_mean.data)
Пример #16
0
    def setUp(self):
        """Create a cube containing a regular lat-lon grid."""
        data = np.zeros((20, 20))
        latitudes = np.linspace(-90, 90, 20)
        longitudes = np.linspace(-180, 180, 20)
        latitude = DimCoord(latitudes,
                            standard_name='latitude',
                            units='degrees')
        longitude = DimCoord(longitudes,
                             standard_name='longitude',
                             units='degrees')

        cube = Cube(data,
                    long_name="test_data",
                    dim_coords_and_dims=[(latitude, 0), (longitude, 1)],
                    units="1")

        orography = cube.copy()
        orography.rename('surface_altitude')
        land = cube.copy()
        land.rename('land_binary_mask')
        land.data = land.data + 1

        ancillary_data = {}
        ancillary_data.update({'orography': orography})
        ancillary_data.update({'land_mask': land})

        sites = OrderedDict()
        sites.update({
            '100': {
                'latitude': 50,
                'longitude': 0,
                'altitude': 10,
                'gmtoffset': 0
            }
        })

        neighbour_list = np.empty(1,
                                  dtype=[('i', 'i8'), ('j', 'i8'),
                                         ('dz', 'f8'), ('edgepoint', 'bool_')])

        self.cube = cube
        self.ancillary_data = ancillary_data
        self.sites = sites
        self.neighbour_list = neighbour_list
Пример #17
0
    def process(self, spot_data_cube: Cube, neighbour_cube: Cube,
                gridded_lapse_rate_cube: Cube) -> Cube:
        """
        Extract lapse rates from the appropriate grid points and apply them to
        the spot extracted temperatures.

        The calculation is::

         lapse_rate_adjusted_temperatures = temperatures + lapse_rate *
         vertical_displacement

        Args:
            spot_data_cube:
                A spot data cube of temperatures for the spot data sites,
                extracted from the gridded temperature field. These
                temperatures will have been extracted using the same
                neighbour_cube and neighbour_selection_method that are being
                used here.
            neighbour_cube:
                The neighbour_cube that contains the grid coordinates at which
                lapse rates should be extracted and the vertical displacement
                between those grid points on the model orography and the spot
                data sites actual altitudes. This cube is only updated when
                a new site is added.
            gridded_lapse_rate_cube:
                A cube of temperature lapse rates on the same grid as that from
                which the spot data temperatures were extracted.

        Returns:
            A copy of the input spot_data_cube with the data modified by
            the lapse rates to give a better representation of the site's
            temperatures.
        """
        # Check the cubes are compatible.
        check_grid_match(
            [neighbour_cube, spot_data_cube, gridded_lapse_rate_cube])

        # Extract the lapse rates that correspond to the spot sites.
        spot_lapse_rate = SpotExtraction(
            neighbour_selection_method=self.neighbour_selection_method)(
                neighbour_cube, gridded_lapse_rate_cube)

        # Extract vertical displacements between the model orography and sites.
        method_constraint = iris.Constraint(
            neighbour_selection_method_name=self.neighbour_selection_method)
        data_constraint = iris.Constraint(
            grid_attributes_key="vertical_displacement")
        vertical_displacement = neighbour_cube.extract(method_constraint
                                                       & data_constraint)

        # Apply lapse rate adjustment to the temperature at each site.
        new_temperatures = (
            spot_data_cube.data +
            (spot_lapse_rate.data * vertical_displacement.data)).astype(
                np.float32)
        new_spot_cube = spot_data_cube.copy(data=new_temperatures)
        return new_spot_cube
Пример #18
0
    def setUp(self):
        # Basic test values.
        src_x_y_value = np.array([
            [20.12, 11.73, 0.01],
            [120.23, -20.73, 1.12],
            [290.34, 33.88, 2.23],
            [-310.45, 57.8, 3.34],
        ])
        tgt_grid_x = np.array([-173.2, -100.3, -32.5, 1.4, 46.6, 150.7])
        tgt_grid_y = np.array([-80.1, -30.2, 0.3, 47.4, 75.5])

        # Make sample 1-D source cube.
        src = Cube(src_x_y_value[:, 2])
        src.add_aux_coord(
            AuxCoord(src_x_y_value[:, 0],
                     standard_name="longitude",
                     units="degrees"),
            0,
        )
        src.add_aux_coord(
            AuxCoord(src_x_y_value[:, 1],
                     standard_name="latitude",
                     units="degrees"),
            0,
        )
        self.src_cube = src

        # Make sample grid cube.
        grid = Cube(np.zeros(tgt_grid_y.shape + tgt_grid_x.shape))
        grid.add_dim_coord(
            DimCoord(tgt_grid_y, standard_name="latitude", units="degrees"), 0)
        grid.add_dim_coord(
            DimCoord(tgt_grid_x, standard_name="longitude", units="degrees"),
            1)
        self.grid_cube = grid

        # Make expected-result, from the expected source-index at each point.
        expected_result_indices = np.array([
            [1, 1, 1, 1, 1, 1],
            [1, 2, 0, 0, 0, 1],
            [1, 2, 2, 0, 0, 1],
            [3, 2, 2, 3, 3, 3],
            [3, 2, 3, 3, 3, 3],
        ])
        self.expected_data = self.src_cube.data[expected_result_indices]

        # Make a 3D source cube, based on the existing 2d test data.
        z_cubes = [src.copy() for _ in range(3)]
        for i_z, z_cube in enumerate(z_cubes):
            z_cube.add_aux_coord(DimCoord([i_z], long_name="z"))
            z_cube.data = z_cube.data + 100.0 * i_z
        self.src_z_cube = CubeList(z_cubes).merge_cube()

        # Make a corresponding 3d expected result.
        self.expected_data_zxy = self.src_z_cube.data[:,
                                                      expected_result_indices]
Пример #19
0
class Test_delete_attributes(IrisTest):
    """Test the delete_attributes method."""
    def setUp(self):
        """Create a cube with attributes to be deleted."""
        data = np.zeros((2, 2))
        long_name = "probability_of_rainfall_rate"
        units = "m s^-1"
        attributes = {
            'title': 'This is a cube',
            'tithe': '10 percent',
            'mosg_model': 'gl_det',
            'mosg_grid_version': 1.0,
            'mosg_grid_name': 'global'
        }

        self.cube = Cube(data, long_name=long_name, units=units)
        self.cube.attributes = attributes

    def test_basic(self):
        """Test that an empty call leaves the cube unchanged."""
        cube = self.cube.copy()
        delete_attributes(cube, [])

        self.assertDictEqual(self.cube.attributes, cube.attributes)

    def test_accepts_string(self):
        """Test that a single string passed as an argument works."""
        attributes_to_delete = 'title'
        attributes = copy(self.cube.attributes)
        attributes.pop(attributes_to_delete)
        delete_attributes(self.cube, attributes_to_delete)

        self.assertDictEqual(attributes, self.cube.attributes)

    def test_accepts_list_of_complete_matches(self):
        """Test that a list of complete attribute names removes the expected
        attributes."""
        attributes_to_delete = ['title', 'tithe', 'mosg_model']
        attributes = copy(self.cube.attributes)
        for item in attributes_to_delete:
            attributes.pop(item)
        delete_attributes(self.cube, attributes_to_delete)

        self.assertDictEqual(attributes, self.cube.attributes)

    def test_accepts_list_of_partial_matches(self):
        """Test that a list of partial patterns removes the expected
        attributes."""
        attributes_to_delete = ['tit', 'mosg_grid']
        expected = {'mosg_model': 'gl_det'}
        delete_attributes(self.cube, attributes_to_delete)

        self.assertDictEqual(expected, self.cube.attributes)
Пример #20
0
    def process(
        self,
        cube: Cube,
        coord_name: str,
        inverse_ordering: bool = False,
    ) -> Cube:
        """
        Calculate nonlinear weights for a given cube and coord.

        Args:
            cube:
                Cube to be blended across the coord.
            coord_name:
                Name of coordinate in the cube to be blended.
            inverse_ordering:
                The input cube blend coordinate will be in ascending order,
                so that calculated blend weights decrease with increasing
                value.  For eg cycle blending by forecast reference time, we
                wish to weight more recent cubes more highly.  This flag gives
                the option to reverse the blend coordinate order so as to have
                higher weights for the higher values.

        Returns:
            1D cube of normalised (sum = 1.0) weights matching input
            dimension to be blended

        Raises:
            TypeError : input is not a cube
        """
        if not isinstance(cube, iris.cube.Cube):
            msg = ("The first argument must be an instance of "
                   "iris.cube.Cube but is"
                   " {0:s}".format(str(type(cube))))
            raise TypeError(msg)

        if inverse_ordering:
            # make a copy of the input cube from which to calculate weights
            inverted_cube = cube.copy()
            inverted_cube = sort_coord_in_cube(inverted_cube,
                                               coord_name,
                                               descending=True)
            cube = inverted_cube

        weights = self.nonlinear_weights(len(cube.coord(coord_name).points))
        weights_cube = WeightsUtilities.build_weights_cube(
            cube, weights, coord_name)

        if inverse_ordering:
            # re-sort the weights cube so that it is in ascending order of
            # blend coordinate (and hence matches the input cube)
            weights_cube = sort_coord_in_cube(weights_cube, coord_name)

        return weights_cube
Пример #21
0
def create_cube_with_percentiles(
    percentiles: Union[List[float], ndarray],
    template_cube: Cube,
    cube_data: ndarray,
    cube_unit: Optional[Union[Unit, str]] = None,
) -> Cube:
    """
    Create a cube with a percentile coordinate based on a template cube.
    The resulting cube will have an extra percentile coordinate compared with
    the template cube. The shape of the cube_data should be the shape of the
    desired output cube.

    Args:
        percentiles:
            Ensemble percentiles. There should be the same number of
            percentiles as the first dimension of cube_data.
        template_cube:
            Cube to copy metadata from.
        cube_data:
            Data to insert into the template cube.
            The shape of the cube_data, excluding the dimension associated with
            the percentile coordinate, should be the same as the shape of
            template_cube.
            For example, template_cube shape is (3, 3, 3), whilst the cube_data
            is (10, 3, 3, 3), where there are 10 percentiles.
        cube_unit:
            The units of the data within the cube, if different from those of
            the template_cube.

    Returns:
        Cube containing a percentile coordinate as the leading dimension (or
        scalar percentile coordinate if single-valued)
    """
    # create cube with new percentile dimension
    cubes = iris.cube.CubeList([])
    for point in percentiles:
        cube = template_cube.copy()
        cube.add_aux_coord(
            iris.coords.AuxCoord(
                np.float32(point), long_name="percentile", units=unit.Unit("%")
            )
        )
        cubes.append(cube)
    result = cubes.merge_cube()

    # replace data and units
    result.data = cube_data
    if cube_unit is not None:
        result.units = cube_unit

    return result
Пример #22
0
    def maximum_within_vicinity(self, cube: Cube) -> Cube:
        """
        Find grid points where a phenomenon occurs within a defined distance.
        The occurrences within this vicinity are maximised, such that all
        grid points within the vicinity are recorded as having an occurrence.
        For non-binary fields, if the vicinity of two occurrences overlap,
        the maximum value within the vicinity is chosen.
        If a land-mask cube has been supplied, process land and sea points
        separately.

        Args:
            cube:
                Thresholded cube.

        Returns:
            Cube where the occurrences have been spatially spread, so that
            they're equally likely to have occurred anywhere within the
            vicinity defined using the specified distance.
        """
        grid_spacing = distance_to_number_of_grid_cells(cube, self.distance)

        # Convert the number of grid points (i.e. grid_spacing) represented
        # by self.distance, e.g. where grid_spacing=1 is an increment to
        # a central point, into grid_cells which is the total number of points
        # within the defined vicinity along the y axis e.g grid_cells=3.
        grid_cells = (2 * grid_spacing) + 1

        max_cube = cube.copy()
        unmasked_cube_data = cube.data.copy()
        if np.ma.is_masked(cube.data):
            unmasked_cube_data = cube.data.data.copy()
            unmasked_cube_data[cube.data.mask] = -np.inf
        if self.land_mask_cube:
            max_data = np.empty_like(cube.data)
            for match in (True, False):
                matched_data = unmasked_cube_data.copy()
                matched_data[self.land_mask != match] = -np.inf
                matched_max_data = maximum_filter(matched_data,
                                                  size=grid_cells)
                max_data = np.where(self.land_mask == match, matched_max_data,
                                    max_data)
        else:
            # The following command finds the maximum value for each grid point
            # from within a square of length "size"
            max_data = maximum_filter(unmasked_cube_data, size=grid_cells)
        if np.ma.is_masked(cube.data):
            # Update only the unmasked values
            max_cube.data.data[~cube.data.mask] = max_data[~cube.data.mask]
        else:
            max_cube.data = max_data
        return max_cube
    def setUp(self):
        # Basic test values.
        src_x_y_value = np.array([
            [20.12, 11.73, 0.01],
            [120.23, -20.73, 1.12],
            [290.34, 33.88, 2.23],
            [-310.45, 57.8, 3.34]])
        tgt_grid_x = np.array([-173.2, -100.3, -32.5, 1.4, 46.6, 150.7])
        tgt_grid_y = np.array([-80.1, -30.2, 0.3, 47.4, 75.5])

        # Make sample 1-D source cube.
        src = Cube(src_x_y_value[:, 2])
        src.add_aux_coord(AuxCoord(src_x_y_value[:, 0],
                                   standard_name='longitude', units='degrees'),
                          0)
        src.add_aux_coord(AuxCoord(src_x_y_value[:, 1],
                                   standard_name='latitude', units='degrees'),
                          0)
        self.src_cube = src

        # Make sample grid cube.
        grid = Cube(np.zeros(tgt_grid_y.shape + tgt_grid_x.shape))
        grid.add_dim_coord(DimCoord(tgt_grid_y,
                                    standard_name='latitude', units='degrees'),
                           0)
        grid.add_dim_coord(DimCoord(tgt_grid_x,
                                    standard_name='longitude',
                                    units='degrees'),
                           1)
        self.grid_cube = grid

        # Make expected-result, from the expected source-index at each point.
        expected_result_indices = np.array([
            [1, 1, 1, 1, 1, 1],
            [1, 2, 0, 0, 0, 1],
            [1, 2, 2, 0, 0, 1],
            [3, 2, 2, 3, 3, 3],
            [3, 2, 3, 3, 3, 3]])
        self.expected_data = self.src_cube.data[expected_result_indices]

        # Make a 3D source cube, based on the existing 2d test data.
        z_cubes = [src.copy() for _ in range(3)]
        for i_z, z_cube in enumerate(z_cubes):
            z_cube.add_aux_coord(DimCoord([i_z], long_name='z'))
            z_cube.data = z_cube.data + 100.0 * i_z
        self.src_z_cube = CubeList(z_cubes).merge_cube()

        # Make a corresponding 3d expected result.
        self.expected_data_zxy = \
            self.src_z_cube.data[:, expected_result_indices]
Пример #24
0
def make_shower_condition_cube(cube: Cube, in_place: bool = False) -> Cube:
    """
    Modify the input cube's metadata and coordinates to produce a shower
    condition proxy. The input cube is expected to possess a single valued
    threshold coordinate.

    Args:
        cube:
            A thresholded diagnostic to be used as a proxy for showery conditions.
            The threshold coordinate should contain only one value, which denotes
            the key threshold that above which conditions are showery, and below
            which precipitation is more likely dynamic.
        in_place:
            If set true the cube is modified in place. By default a modified
            copy is returned.

    Returns:
        A shower condition probability cube that is an appropriately renamed
        version of the input with an updated threshold coordinate representing
        the probability of shower conditions occurring.

    Raises:
        CoordinateNotFoundError: Input has no threshold coordinate.
        ValueError: Input cube's threshold coordinate is multi-valued.
    """

    if not in_place:
        cube = cube.copy()

    shower_condition_name = "shower_condition"
    cube.rename(f"probability_of_{shower_condition_name}_above_threshold")
    try:
        shower_threshold = find_threshold_coordinate(cube)
    except CoordinateNotFoundError as err:
        msg = "Input has no threshold coordinate and cannot be used"
        raise CoordinateNotFoundError(msg) from err

    try:
        (_, ) = shower_threshold.points
    except ValueError as err:
        msg = ("Expected a single valued threshold coordinate, but threshold "
               f"contains multiple points : {shower_threshold.points}")
        raise ValueError(msg) from err

    cube.coord(shower_threshold).rename(shower_condition_name)
    cube.coord(shower_condition_name).var_name = "threshold"
    cube.coord(shower_condition_name).points = FLOAT_DTYPE(1.0)
    cube.coord(shower_condition_name).units = 1

    return cube
Пример #25
0
def test_multidim_cubes():
    """
    Test for :func:`esmf_regrid.experimental.unstructured_scheme.MeshToGridESMFRegridder`.

    Tests with multidimensional cubes. The source cube contains
    coordinates on the dimensions before and after the mesh dimension.
    """
    mesh = _full_mesh()
    mesh_length = mesh.connectivity(contains_face=True).shape[0]

    h = 2
    t = 3
    height = DimCoord(np.arange(h), standard_name="height")
    time = DimCoord(np.arange(t), standard_name="time")

    src_data = np.empty([t, mesh_length, h])
    src_data[:] = np.arange(t * h).reshape([t, h])[:, np.newaxis, :]
    mesh_cube = Cube(src_data)
    mesh_coord_x, mesh_coord_y = mesh.to_MeshCoords("face")
    mesh_cube.add_aux_coord(mesh_coord_x, 1)
    mesh_cube.add_aux_coord(mesh_coord_y, 1)
    mesh_cube.add_dim_coord(time, 0)
    mesh_cube.add_dim_coord(height, 2)

    n_lons = 6
    n_lats = 5
    lon_bounds = (-180, 180)
    lat_bounds = (-90, 90)
    tgt = _grid_cube(n_lons, n_lats, lon_bounds, lat_bounds, circular=True)

    src_cube = mesh_cube.copy()
    src_cube.transpose([1, 0, 2])
    regridder = MeshToGridESMFRegridder(src_cube, tgt)
    result = regridder(mesh_cube)

    # Lenient check for data.
    expected_data = np.empty([t, n_lats, n_lons, h])
    expected_data[:] = np.arange(t * h).reshape(t, h)[:, np.newaxis,
                                                      np.newaxis, :]
    assert np.allclose(expected_data, result.data)

    expected_cube = Cube(expected_data)
    expected_cube.add_dim_coord(time, 0)
    expected_cube.add_dim_coord(tgt.coord("latitude"), 1)
    expected_cube.add_dim_coord(tgt.coord("longitude"), 2)
    expected_cube.add_dim_coord(height, 3)

    # Check metadata and scalar coords.
    result.data = expected_data
    assert expected_cube == result
Пример #26
0
    def setUp(self):
        empty = Cube([])

        self.cube_no_attrs = empty.copy()

        self.cube_a1 = empty.copy()
        self.cube_a1.attributes.update({"a": 1})

        self.cube_a2 = empty.copy()
        self.cube_a2.attributes.update({"a": 2})

        self.cube_a1b5 = empty.copy()
        self.cube_a1b5.attributes.update({"a": 1, "b": 5})

        self.cube_a1b6 = empty.copy()
        self.cube_a1b6.attributes.update({"a": 1, "b": 6})

        self.cube_a2b6 = empty.copy()
        self.cube_a2b6.attributes.update({"a": 2, "b": 6})

        self.cube_b5 = empty.copy()
        self.cube_b5.attributes.update({"b": 5})

        # Array attribute values
        v1 = np.array([11, 12, 13])
        v2 = np.array([11, 9999, 13])
        self.v1 = v1
        self.v2 = v2

        self.cube_a1b5v1 = empty.copy()
        self.cube_a1b5v1.attributes.update({"a": 1, "b": 5, "v": v1})

        self.cube_a1b6v1 = empty.copy()
        self.cube_a1b6v1.attributes.update({"a": 1, "b": 6, "v": v1})

        self.cube_a1b6v2 = empty.copy()
        self.cube_a1b6v2.attributes.update({"a": 1, "b": 6, "v": v2})
Пример #27
0
    def setUp(self):
        empty = Cube([])

        self.cube_no_attrs = empty.copy()

        self.cube_a1 = empty.copy()
        self.cube_a1.attributes.update({"a": 1})

        self.cube_a2 = empty.copy()
        self.cube_a2.attributes.update({"a": 2})

        self.cube_a1b5 = empty.copy()
        self.cube_a1b5.attributes.update({"a": 1, "b": 5})

        self.cube_a1b6 = empty.copy()
        self.cube_a1b6.attributes.update({"a": 1, "b": 6})

        self.cube_a2b6 = empty.copy()
        self.cube_a2b6.attributes.update({"a": 2, "b": 6})

        self.cube_b5 = empty.copy()
        self.cube_b5.attributes.update({"b": 5})

        # Array attribute values
        v1 = np.array([11, 12, 13])
        v2 = np.array([11, 9999, 13])
        self.v1 = v1

        self.cube_a1b5v1 = empty.copy()
        self.cube_a1b5v1.attributes.update({"a": 1, "b": 5, "v": v1})

        self.cube_a1b6v1 = empty.copy()
        self.cube_a1b6v1.attributes.update({"a": 1, "b": 6, "v": v1})

        self.cube_a1b6v2 = empty.copy()
        self.cube_a1b6v2.attributes.update({"a": 1, "b": 6, "v": v2})
Пример #28
0
    def setUp(self):
        empty = Cube([])

        self.cube_no_attrs = empty.copy()

        self.cube_a1 = empty.copy()
        self.cube_a1.attributes.update({'a': 1})

        self.cube_a2 = empty.copy()
        self.cube_a2.attributes.update({'a': 2})

        self.cube_a1b5 = empty.copy()
        self.cube_a1b5.attributes.update({'a': 1, 'b': 5})

        self.cube_a1b6 = empty.copy()
        self.cube_a1b6.attributes.update({'a': 1, 'b': 6})

        self.cube_a2b6 = empty.copy()
        self.cube_a2b6.attributes.update({'a': 2, 'b': 6})

        self.cube_b5 = empty.copy()
        self.cube_b5.attributes.update({'b': 5})

        # Array attribute values
        v1 = np.array([11, 12, 13])
        v2 = np.array([11, 9999, 13])
        self.v1 = v1

        self.cube_a1b5v1 = empty.copy()
        self.cube_a1b5v1.attributes.update({'a': 1, 'b': 5, 'v': v1})

        self.cube_a1b6v1 = empty.copy()
        self.cube_a1b6v1.attributes.update({'a': 1, 'b': 6, 'v': v1})

        self.cube_a1b6v2 = empty.copy()
        self.cube_a1b6v2.attributes.update({'a': 1, 'b': 6, 'v': v2})
Пример #29
0
 def _nonlatlon_uv_cubes(x, y, u, v):
     # Create u and v test cubes from x, y, u, v arrays.
     coord_cls = DimCoord if x.ndim == 1 else AuxCoord
     x_coord = coord_cls(x, long_name='x')
     y_coord = coord_cls(y, long_name='y')
     u_cube = Cube(u, long_name='u', units='ms-1')
     if x.ndim == 1:
         u_cube.add_dim_coord(y_coord, 0)
         u_cube.add_dim_coord(x_coord, 1)
     else:
         u_cube.add_aux_coord(y_coord, (0, 1))
         u_cube.add_aux_coord(x_coord, (0, 1))
     v_cube = u_cube.copy()
     v_cube.rename('v')
     v_cube.data = v
     return u_cube, v_cube
Пример #30
0
 def _nonlatlon_uv_cubes(x, y, u, v):
     # Create u and v test cubes from x, y, u, v arrays.
     coord_cls = DimCoord if x.ndim == 1 else AuxCoord
     x_coord = coord_cls(x, long_name="x")
     y_coord = coord_cls(y, long_name="y")
     u_cube = Cube(u, long_name="u", units="ms-1")
     if x.ndim == 1:
         u_cube.add_dim_coord(y_coord, 0)
         u_cube.add_dim_coord(x_coord, 1)
     else:
         u_cube.add_aux_coord(y_coord, (0, 1))
         u_cube.add_aux_coord(x_coord, (0, 1))
     v_cube = u_cube.copy()
     v_cube.rename("v")
     v_cube.data = v
     return u_cube, v_cube
Пример #31
0
def transform_grid_to_lat_lon(cube: Cube) -> Tuple[ndarray, ndarray]:
    """
    Calculate the latitudes and longitudes of each points in the cube.

    Args:
        cube:
            Cube with points to transform

    Returns
        lats:
            Array of cube.data.shape of Latitude values
        lons:
            Array of cube.data.shape of Longitude values
    """
    trg_latlon = ccrs.PlateCarree()
    trg_crs = cube.coord_system().as_cartopy_crs()
    cube = cube.copy()
    # TODO use the proj units that are accesible with later versions of proj
    # to determine the default units to convert to for a given projection.

    # Assuming proj units of metre for all projections not in degrees.
    for axis in ["x", "y"]:
        try:
            cube.coord(axis=axis).convert_units("m")
        except ValueError as err:
            msg = (
                "Cube passed to transform_grid_to_lat_lon does not have an "
                f"{axis} coordinate with units that can be converted to metres. "
            )
            raise ValueError(msg + str(err))

    x_points = cube.coord(axis="x").points
    y_points = cube.coord(axis="y").points
    x_zeros = np.zeros_like(x_points)
    y_zeros = np.zeros_like(y_points)

    # Broadcast x points and y points onto grid
    all_x_points = y_zeros.reshape(len(y_zeros), 1) + x_points
    all_y_points = y_points.reshape(len(y_points), 1) + x_zeros

    # Transform points
    points = trg_latlon.transform_points(trg_crs, all_x_points, all_y_points)
    lons = points[..., 0]
    lats = points[..., 1]

    return lats, lons
Пример #32
0
    def _apply_orographic_enhancement(self, precip_cube: Cube,
                                      oe_cube: Cube) -> Cube:
        """Combine the precipitation rate cube and the orographic enhancement
        cube.

        Args:
            precip_cube:
                Cube containing the input precipitation field.
            oe_cube:
                Cube containing the orographic enhancement field matching
                the validity time of the precipitation cube.

        Returns:
            Cube containing the precipitation rate field modified by the
            orographic enhancement cube.
        """
        # Convert orographic enhancement into the units of the precipitation
        # rate cube.
        oe_cube.convert_units(precip_cube.units)

        # Set orographic enhancement to be zero for points with a
        # precipitation rate of < 1/32 mm/hr.
        original_units = Unit("mm/hr")
        threshold_in_cube_units = original_units.convert(
            self.min_precip_rate_mmh, precip_cube.units)

        # Ignore invalid warnings generated if e.g. a NaN is encountered
        # within the less than (<) comparison.
        with np.errstate(invalid="ignore"):
            oe_cube.data[precip_cube.data < threshold_in_cube_units] = 0.0

        # Add / subtract orographic enhancement where data is not masked
        cube = precip_cube.copy()
        if self.operation == "add":
            cube.data = cube.data + oe_cube.data
        elif self.operation == "subtract":
            cube.data = cube.data - oe_cube.data
        else:
            msg = ("Operation '{}' not supported for combining "
                   "precipitation rate and "
                   "orographic enhancement.".format(self.operation))
            raise ValueError(msg)

        return cube
Пример #33
0
class Test_is_compatible(tests.IrisTest):
    def setUp(self):
        self.test_cube = Cube([1.])
        self.other_cube = self.test_cube.copy()

    def test_noncommon_array_attrs_compatible(self):
        # Non-common array attributes should be ok.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.assertTrue(self.test_cube.is_compatible(self.other_cube))

    def test_matching_array_attrs_compatible(self):
        # Matching array attributes should be ok.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.other_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.assertTrue(self.test_cube.is_compatible(self.other_cube))

    def test_different_array_attrs_incompatible(self):
        # Differing array attributes should make the cubes incompatible.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.other_cube.attributes['array_test'] = np.array([1.0, 2, 777.7])
        self.assertFalse(self.test_cube.is_compatible(self.other_cube))
Пример #34
0
class Test_is_compatible(tests.IrisTest):
    def setUp(self):
        self.test_cube = Cube([1.])
        self.other_cube = self.test_cube.copy()

    def test_noncommon_array_attrs_compatible(self):
        # Non-common array attributes should be ok.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.assertTrue(self.test_cube.is_compatible(self.other_cube))

    def test_matching_array_attrs_compatible(self):
        # Matching array attributes should be ok.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.other_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.assertTrue(self.test_cube.is_compatible(self.other_cube))

    def test_different_array_attrs_incompatible(self):
        # Differing array attributes should make the cubes incompatible.
        self.test_cube.attributes['array_test'] = np.array([1.0, 2, 3])
        self.other_cube.attributes['array_test'] = np.array([1.0, 2, 777.7])
        self.assertFalse(self.test_cube.is_compatible(self.other_cube))
Пример #35
0
 def test__lazy(self):
     cube = Cube(biggus.NumpyArrayAdapter(np.array([1, 0])))
     self._check_copy(cube, cube.copy())
Пример #36
0
 def test__masked_emptymask(self):
     cube = Cube(np.ma.array([0, 1]))
     self._check_copy(cube, cube.copy())
Пример #37
0
 def test__masked_arraymask(self):
     cube = Cube(np.ma.array([0, 1], mask=[True, False]))
     self._check_copy(cube, cube.copy())
Пример #38
0
 def test__scalar(self):
     cube = Cube(0)
     self._check_copy(cube, cube.copy())
Пример #39
0
 def test__masked_scalar_emptymask(self):
     cube = Cube(np.ma.array(0))
     self._check_copy(cube, cube.copy())
Пример #40
0
 def test__masked_scalar_arraymask(self):
     cube = Cube(np.ma.array(0, mask=False))
     self._check_copy(cube, cube.copy())