Пример #1
0
def cloud_lats(cubes, time_slice=-1, long=0):
    
    for cube in cubes:

        if cube.long_name == 'cloud_volume_fraction_in_atmosphere_layer':
            cloud_volume = cube.copy()
        if cube.long_name == 'liquid_cloud_volume_fraction_in_atmosphere_layer':
            liquid_cloud = cube.copy()
        if cube.long_name == 'ice_cloud_volume_fraction_in_atmosphere_layer':
            ice_cloud = cube.copy()
        if cube.standard_name == 'mass_fraction_of_cloud_ice_in_air':
            ice_condensate = cube.copy()
        if cube.standard_name == 'mass_fraction_of_cloud_liquid_water_in_air':
            liquid_condensate = cube.copy()
    
    longitudes = cloud_volume.coord('longitude').points
    for cube in (cloud_volume, liquid_cloud, ice_cloud,
                 ice_condensate, liquid_condensate):
        
        if cube.standard_name == None:
            title = cube.long_name
        else:
            title = cube.standard_name
            

        iplt.contourf(cube[time_slice,:,:,long], brewer_bg.N, cmap=brewer_bg)
        plt.title('%s at %s' %(title,longitudes[long]), y=1.05)
        plt.ylabel('Height [m]')
        plt.xlabel('Latitude [degrees]')
        cbar = plt.colorbar(pad=0.1)
        cbar.ax.set_title('kg/kg')
        plt.show()
Пример #2
0
 def test_y_fastest(self):
     cubes = iris.load(tests.get_data_path(("GRIB", "y_fastest", "y_fast.grib2")))
     self.assertCML(cubes, ("grib_load", "y_fastest.cml"))
     iplt.contourf(cubes[0])
     iplt.gcm(cubes[0]).drawcoastlines()
     plt.title("y changes fastest")
     self.check_graphic()
Пример #3
0
def plot_vorticity(cubes, level=15, time_slice=-1, omega=0.64617667):
    
    """ Uses windspharm package to plot the vorticity       """
    
    for cube in cubes:
        if cube.standard_name == 'x_wind':
            x_wind = cube.copy()
        if cube.standard_name == 'y_wind':
            y_wind = cube.copy()
   
    
    y_wind = y_wind.regrid(x_wind, iris.analysis.Linear())
    heights = np.round(x_wind.coord('level_height').points*1e-03,0)

    wind = windspharm.iris.VectorWind(x_wind, y_wind)

    planet_vort = wind.planetaryvorticity(omega=omega)
    relative_vort = wind.vorticity()
    absolute_vort = wind.absolutevorticity()
    
    iplt.contourf(relative_vort[time_slice,level,:,:], brewer_redblu.N, cmap=brewer_redblu, norm=TwoSlopeNorm(0))
    plt.title('Relative Vorticity, h = %s km' %(heights[level]), y=1.20)
    plt.ylabel('Latitude [degrees]')
    plt.xlabel('Longitude [degrees]')
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.colorbar(orientation='horizontal')
    plt.show()
Пример #4
0
 def test_xaxis_labels_with_axes(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     iplt.contourf(self.cube, axes=ax, coords=('str_coord', 'bar'))
     plt.close(fig)
     self.assertPointsTickLabels('xaxis', ax)
Пример #5
0
 def test_xaxis_labels_with_axes(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     iplt.contourf(self.cube, axes=ax, coords=('str_coord', 'bar'))
     plt.close(fig)
     self.assertPointsTickLabels('xaxis', ax)
Пример #6
0
def plotCode(timeseries, climatology, modelID):

    years = timeseries.coord('year').points
    f = plt.figure(figsize=(15, 5))

    plt.subplot(1, 2, 1)
    plt.bar(years, timeseries.data)
    plt.xlabel('years')
    plt.ylabel('precip kg m-2 day-1')
    #plt.xlim(0, len(timeseries.data))
    plt.title('JJAS pr 5S-20N ; 18W-15E: ' + modelID)

    plt.subplot(1, 2, 2)
    levs = np.linspace(1, 20, 20)
    iplt.contourf(climatology, levs, cmap='jet_r')
    m = bm.Basemap(projection='cyl',
                   llcrnrlat=np.min(climatology.coord('latitude').points),
                   urcrnrlat=np.max(climatology.coord('latitude').points),
                   llcrnrlon=np.min(climatology.coord('longitude').points),
                   urcrnrlon=np.max(climatology.coord('longitude').points),
                   resolution='c')  # medium resolution for grid
    m.drawcoastlines(linewidth=2)
    m.drawcountries(linewidth=1)
    plt.title('JJAS mean pr (1950-2005) 5S-20N ; 18W-15E:' + modelID)
    cbar = plt.colorbar(orientation="vertical")
    cbar.set_label('precip kg m-2 day-1')
    #qplt.pcolor(climatology)
    #plt.tight_layout()
    plt.savefig(
        '/nfs/see-fs-01_teaching/earv057/metrics_workshop/Ev_To/Figures_png/' +
        modelID + 'jjas.png')
Пример #7
0
def rossby_source(cubes, time_slice=-1, level=0):  
            
    for cube in cubes:
        if cube.standard_name == 'x_wind':
            x_wind = cube.copy()
        if cube.standard_name == 'y_wind':
            y_wind = cube.copy()
 
    y_wind = y_wind.regrid(x_wind, iris.analysis.Linear())
    
    winds = windspharm.iris.VectorWind(x_wind,y_wind)
    
    eta = winds.absolutevorticity()
    div = winds.divergence()
    uchi, vchi = winds.irrotationalcomponent()
    etax, etay = winds.gradient(eta)
    etax.units = 'm**-1 s**-1'
    etay.units = 'm**-1 s**-1'
    
    S = eta*-1.*div-(uchi*etax+vchi*etay)
    S.coord('longitude').attributes['circular'] = True
    print(S.shape)
    print(S)
    
    clevs = [-30,-25,-20,-15,-10,-5,0,5,10,15,20,25,30]
    iplt.contourf(S[time_slice,level,:,:]*1e11,clevs,cmap=brewer_redblu, extend='both')
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.colorbar(orientation='horizontal')
    plt.title('Rossby Wave Source ($10^{-11}$s$^{-1}$)')
    plt.show()
Пример #8
0
def plot_timehgt(cube, levels, title, log=False, ax1=None):
    """
    Plot fields as time-pressure.

    Routine to plot fields as time-pressure contours with given
    contour levels.
    Option to plot against log(pressure).
    """
    (colormap, normalisation) = cmap_and_norm('brewer_RdBu_11', levels)
    if ax1 is None:
        ax1 = plt.gca()
    ax1.set_title(title)
    iplt.contourf(cube, levels=levels, cmap=colormap, norm=normalisation)
    lwid = 1. * np.ones_like(levels)
    cl1 = iplt.contour(cube, colors='k', linewidths=lwid, levels=levels)
    plt.clabel(cl1, cl1.levels, inline=1, fontsize=6, fmt='%1.0f')
    ax1.set_xlabel('Year', fontsize='small')
    time_coord = cube.coord('time')
    new_epoch = time_coord.points[0]
    new_unit_str = 'hours since {}'
    new_unit = new_unit_str.format(time_coord.units.num2date(new_epoch))
    ax1.xaxis.axis_date()
    ax1.xaxis.set_label(new_unit)
    ax1.xaxis.set_major_locator(mdates.YearLocator(4))
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
    ax1.set_ylabel('Pressure (Pa)', fontsize='small')
    ax1.set_ylim(100000., 10.)
    if log:
        ax1.set_yscale("log")
Пример #9
0
def make_plot(forecast, analysis, variable, levels, units, errlevs, clevs,
              cmap='coolwarm', mask=None):
    # Extract data and errors
    f = convert.calc(variable, forecast, levels=levels)[0]
    a = convert.calc(variable, analysis, levels=levels)[0]
    err = f - a

    for cube in [f, a, err]:
        cube.convert_units(units)

    if mask is not None:
        for cube in [f, a]:
            cube.data = np.ma.masked_where(mask, cube.data)

    # Plot error
    iplt.contourf(err, errlevs, cmap=cmap, extend='both')
    add_map()
    cbar = plt.colorbar(orientation='horizontal', spacing='proportional')
    errlevs.append(0)
    cbar.set_ticks(errlevs)
    cbar.set_label(units)

    # Overlay forecast and analysis
    cs = iplt.contour(f, clevs, colors='k', linewidths=2)
    iplt.contour(a, clevs, colors='k', linewidths=2, linestyles='--')
    plt.clabel(cs, fmt='%1.0f', colors='k')

    return
Пример #10
0
 def test_ij_directions_ineg_jpos(self):
     cubes = self._old_compat_load("ineg_jpos.grib2")
     self.assertCML(cubes, ("grib_load", "ineg_jpos.cml"))
     iplt.contourf(cubes[0])
     plt.gca().coastlines()
     plt.title("ineg_jpos cube")
     self.check_graphic()
def main():
    fname = iris.sample_data_path('NAME_output.txt')

    boundary_volc_ash_constraint = iris.Constraint(
        'VOLCANIC_ASH_AIR_CONCENTRATION', flight_level='From FL000 - FL200')

    # Callback shown as None to illustrate where a cube-level callback function would be used if required
    cube = iris.load_strict(fname, boundary_volc_ash_constraint, callback=None)

    map = iplt.map_setup(lon_range=[-70, 20],
                         lat_range=[20, 75],
                         resolution='i')

    map.drawcoastlines()

    iplt.contourf(cube,
                  levels=(0.0002, 0.002, 0.004, 1),
                  colors=('#80ffff', '#939598', '#e00404'),
                  extend='max')

    time = cube.coord('time')
    time_date = time.units.num2date(time.points[0]).strftime(UTC_format)
    plt.title('Volcanic ash concentration forecast\nvalid at %s' % time_date)

    plt.show()
Пример #12
0
def make_plot(ax, dtheta, pv, tr):
    im = iplt.pcolormesh(dtheta, vmin=-30, vmax=30, cmap="seismic")
    print(dtheta.data.min(), dtheta.data.max())
    ax.coastlines()
    ax.gridlines()

    # Add a contour for PV=2 and also shade PV>2
    iplt.contour(pv, [2], colors='k')
    pv.data = (pv.data > 2).astype(float)
    iplt.contourf(pv, [0.9, 1.1], colors="k", alpha=0.25)

    # Need to use the cube's coordinate reference system to properly add regular
    # coordinates on top
    crs = dtheta.coord(axis="x").coord_system.as_cartopy_crs()
    plt.plot(tr.x[:, 0] - 360, tr.y[:, 0], transform=crs, lw=3, color='cyan')

    # With the projection the axis limits don't set well, so shrink it down as much as
    # possible
    x, y = pv.coord(axis="x"), pv.coord(axis="y")
    ax.set_extent(
        [x.points.min(),
         x.points.max(),
         y.points.min(),
         y.points.max()],
        crs=crs)

    return im
Пример #13
0
def _create_feedback_plot(tas_cube, cube, dataset_name, cfg, description=None):
    """Plot feedback parameter vs. remaining dimensions."""
    var = cube.var_name
    logger.debug("Plotting '%s' vs. %s for '%s'", SHORTER_NAMES.get(var, var),
                 COORDS['rad'], dataset_name)
    x_data = _get_data_time_last(tas_cube)
    y_data = _get_data_time_last(cube)
    coords = [(coord, idx - 1)
              for (idx, coord) in enumerate(cube.coords(dim_coords=True))
              if coord.name() != 'time']
    feedback_cube = iris.cube.Cube(_get_slope(x_data, y_data),
                                   var_name=var,
                                   dim_coords_and_dims=coords,
                                   units='W m-2 K-1')

    # Plot
    if feedback_cube.ndim == 1:
        iplt.plot(feedback_cube)
        plt.xlabel(f"{COORDS['rad'][0]} / "
                   f"{cube.coord(COORDS['rad'][0]).units.origin}")
        plt.ylabel(f"{NICE_SYMBOLS.get(var, var)} / "
                   f"{NICE_UNITS.get(feedback_cube.units.origin, 'unknown')}")
        colorbar = None
    elif feedback_cube.ndim == 2:
        iplt.contourf(feedback_cube, cmap='bwr', levels=_get_levels())
        colorbar = plt.colorbar(orientation='horizontal')
        colorbar.set_label(
            f"{NICE_SYMBOLS.get(var, var)} / "
            f"{NICE_UNITS.get(feedback_cube.units.origin, 'unknown')}")
        ticks = [-8.0, -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 8.0]
        colorbar.set_ticks(ticks)
        colorbar.set_ticklabels([str(tick) for tick in ticks])
        if COORDS['rad'] == ['latitude', 'longitude']:
            plt.gca().coastlines()
        else:
            plt.xlabel(f"{COORDS['rad'][0]} / "
                       f"{cube.coord(COORDS['rad'][0]).units.origin}")
            plt.ylabel(f"{COORDS['rad'][1]} / "
                       f"{cube.coord(COORDS['rad'][1]).units.origin}")
    else:
        raise ValueError(f"Cube dimension {feedback_cube.ndim} not supported")

    # Appearance
    title = f'{SHORTER_NAMES.get(var, var)} for {dataset_name}'
    filename = ('{}_vs_{}_{}'.format(VAR_NAMES.get(var, var),
                                     '-'.join(COORDS['rad']), dataset_name))
    if description is not None:
        title += f' ({description})'
        filename += f"_{description.replace(' ', '_')}"
    plt.title(title)
    plot_path = get_plot_filename(filename, cfg)
    plt.savefig(plot_path,
                bbox_inches='tight',
                orientation='landscape',
                additional_artists=[colorbar])
    logger.info("Wrote %s", plot_path)
    plt.close()

    return (plot_path, feedback_cube)
Пример #14
0
def plotrun(cube, foldername, scaleLBound, scaleUBound):

    # Delete all the image files in the directory to ensure that only those
    # created in the loop end up in the movie.
    print("Deleting all .png files in the " + foldername + " directory...")
    SpawnCommand("rm " + foldername + "/*.png")

    # Add a new coordinate containing the year.
    icat.add_year(cube, 'time')

    # Set the end index for the loop over years, and do the loop.
    tmin = 0
    tmax = cube.shape[0]

    # We want the files to be numbered sequentially, starting
    # from 000.png; this is so that the ffmpeg command can grok them.
    index = 0
    #scaleBarArray = scaleBar(lowerBound, upperBound)
    for time in range(tmin, tmax):

        fig = plt.figure(figsize=(6, 3), dpi=200)
        rect = 0, 0, 1200, 600
        fig.add_axes(rect)
        geo_axes = plt.axes(projection=ccrs.PlateCarree())
        geo_axes.outline_patch.set_visible(False)
        plt.margins(0, 0)
        fig.subplots_adjust(left=0, right=1, bottom=0, top=1)

        iplt.contourf(cube[time],
                      10,
                      vmin=scaleLBound,
                      vmax=scaleUBound,
                      cmap='YlOrRd')
        plt.gca().coastlines(color='b')
        # plt.figure(frameon=False)

        # Extract the year value and display it (coordinates used are
        # those of the data).
        year = cube.coord('year')[time].points[0]

        plt.text(-160,
                 0,
                 year,
                 horizontalalignment='center',
                 size='large',
                 fontdict={'family': 'monospace'},
                 color='b')
        filename = str(foldername) + '/' + "%03d.png" % index
        print('Now plotting: ', filename)
        plt.savefig(filename, dpi=200)
        plt.close()
        index += 1

    # Now make the movie from the image files by spawning the ffmpeg command.
    # The options (of which there are many) are somewhat arcane, but these ones work.
    print("Converting images to movie...")
    options = ("-r 5 -vcodec png -y -i " + foldername +
               "/%03d.png -r 5 -vcodec msmpeg4v2 -qblur 0.01 -qscale 5 ")
    SpawnCommand("ffmpeg " + options + foldername + ".mp4")
Пример #15
0
 def test_y_fastest(self):
     cubes = iris.load(
         tests.get_data_path(("GRIB", "y_fastest", "y_fast.grib2")))
     self.assertCML(cubes, ("grib_load", "y_fastest.cml"))
     iplt.contourf(cubes[0])
     plt.gca().coastlines()
     plt.title("y changes fastest")
     self.check_graphic()
Пример #16
0
Файл: azeq.py Проект: pp-mo/azeq
def rotating_sequence(show_frames=True, save_frames=True, 
                      save_ani=False, show_ani=False,
                      ani_path='./puffer.mp4',
                      frames_basename='./puffer_frame_',
                      airtemp_cubes=None,
                      precip_cubes=None,
                      n_steps_round=20,
                      tilt_angle=21.7
                      ):
    plt.interactive(show_frames)
    figure = make_puffersphere_figure()
#    per_image_artists = []
    for (i_plt, lon_rotate) in enumerate(np.linspace(0.0, 360.0, n_steps_round, endpoint=False)):
        print 'rotate=', lon_rotate,' ...'
        axes = make_puffersphere_axes(
            projection_kwargs={'central_longitude': lon_rotate, 'central_latitude': tilt_angle})
        image = axes.stock_img()
        coast = axes.coastlines()
#        data = istk.global_pp()
        data = airtemp_cubes[i_plt]
        transparent_blue = (0.0, 0.0, 1.0, 0.25)
        transparent_red = (1.0, 0.0, 0.0, 0.25)
        cold_thresh = -10.0
        cold_fill = iplt.contourf(
              data,
              levels=[cold_thresh, cold_thresh],
              colors=[transparent_blue],
              extend='min')
        cold_contour = iplt.contour(
            data,
            levels=[cold_thresh], colors=['blue'],
            linestyles=['solid'])
        data = precip_cubes[i_plt]
        precip_thresh = 0.0001
        precip_fill = iplt.contourf(
            data,
            levels=[precip_thresh, precip_thresh],
            colors=[transparent_red],
            extend='max')
        precip_contour = iplt.contour(
            data,
            levels=[precip_thresh], colors=['red'],
            linestyles=['solid'])
        gridlines = draw_gridlines(n_meridians=6)
#        artists = []
#        artists += [coast]
#        artists += [image]
#        artists += cold_fill.collections
#        artists += precip_fill.collections
#        for gridline in gridlines:
#            artists += gridline
        if show_frames:
            plt.draw()
        if save_frames:
            save_path = frames_basename+str(i_plt)+'.png'
            save_figure_for_puffersphere(figure, save_path)
#        per_image_artists.append(artists)
        print '  ..done.'
Пример #17
0
 def test_coord_names(self):
     # Pass in names of dimension coords.
     iplt.contourf(self.cube, coords=["grid_longitude", "grid_latitude"])
     plt.gca().coastlines("110m")
     self.check_graphic()
     # Pass in names of auxiliary coords.
     iplt.contourf(self.cube, coords=["longitude", "latitude"])
     plt.gca().coastlines("110m")
     self.check_graphic()
Пример #18
0
def plot_hovmoller(nc_path,
                   var,
                   out_path,
                   do_latitude=True,
                   xlabel='',
                   ylabel='',
                   title='',
                   cbar=''):
    """
    Ref: http://scitools.org.uk/iris/docs/v0.9.1/examples/graphics/hovmoller.html
    :param nc_path:
    :param var:
    :param out_path:
    :param do_latitude:
    :param xlabel:
    :param ylabel:
    :param title:
    :param cbar:
    :return:
    """
    logger.info('Plot hovmoller')
    # TODO: Iris install is not working on mac os x
    if os.name == 'mac' or os.name == 'posix':
        return
    import iris
    import iris.plot as iplt
    iris.FUTURE.netcdf_promote = True
    cubes = iris.load(nc_path, var)

    # Take the mean over latitude/longitude
    if do_latitude:
        cube = cubes[0].collapsed('latitude', iris.analysis.MEAN)
    else:
        cube = cubes[0].collapsed('longitude', iris.analysis.MEAN)

    # Create the plot contour with 20 levels
    iplt.contourf(cube,
                  20,
                  cmap=palettable.colorbrewer.diverging.RdYlGn_9.mpl_colormap)
    if not do_latitude:
        plt.ylabel(xlabel)  # Latitude
        plt.xlabel(ylabel)  # Years
    else:
        plt.ylabel(ylabel)  # Years
        plt.xlabel(xlabel)  # Longitude
    plt.title(title)
    plt.colorbar(orientation='horizontal',
                 extend='both',
                 drawedges=False,
                 spacing='proportional').set_label(cbar)

    # Stop matplotlib providing clever axes range padding and do not draw gridlines
    plt.grid(b=False)
    plt.axis('tight')
    plt.tight_layout()
    plt.savefig(out_path, dpi=constants.DPI)
    plt.close()
Пример #19
0
 def test_coord_names(self):
     # Pass in names of dimension coords.
     iplt.contourf(self.cube, coords=['grid_longitude', 'grid_latitude'])
     plt.gca().coastlines()
     self.check_graphic()
     # Pass in names of auxiliary coords.
     iplt.contourf(self.cube, coords=['longitude', 'latitude'])
     plt.gca().coastlines()
     self.check_graphic()
Пример #20
0
def gif_longwave(i, outgoing_lw):

    iplt.contourf(outgoing_lw[i, :, :], brewer_reds.N, cmap=brewer_reds)
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.title('Monthly Mean Outgoing LW Radiation, month %s' % (i + 1), y=1.10)
    plt.ylabel('Latitude [degrees]')
    plt.xlabel('Longitude [degrees]')
    plt.colorbar(pad=0.1)
Пример #21
0
def gif_airtemp(i, mean_absolute_temp):

    iplt.contourf(mean_absolute_temp[i, :, :], brewer_reds.N, cmap=brewer_reds)
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.title('Monthly Mean Air Temperature, month %s' % (i + 1), y=1.10)
    plt.ylabel('Latitude [degrees]')
    plt.xlabel('Longitude [degrees]')
    plt.colorbar(pad=0.1)
Пример #22
0
def gif_cloudcover(i, cloud_cover):

    iplt.contourf(cloud_cover[i, :, :], brewer_bg.N, cmap=brewer_bg)
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.title('Cloud cover, day %s' % (i + 1), y=1.10)
    plt.ylabel('Latitude [degrees]')
    plt.xlabel('Longitude [degrees]')
    plt.colorbar(pad=0.1)
Пример #23
0
 def test_coord_names(self):
     # Pass in names of dimension coords.
     iplt.contourf(self.cube, coords=['grid_longitude', 'grid_latitude'])
     plt.gca().coastlines()
     self.check_graphic()
     # Pass in names of auxiliary coords.
     iplt.contourf(self.cube, coords=['longitude', 'latitude'])
     plt.gca().coastlines()
     self.check_graphic()
Пример #24
0
def main():

    # Delete all the image files in the current directory to ensure that only those
    # created in the loop end up in the movie.
    print "Deleting all .png files in this directory..."
    SpawnCommand("rm *.png")

    # Read all the temperature values.
    temperatures = iris.load_cube('temperatures.pp')
    
    # Get the range of values.
    minTemp = np.amin(temperatures.data)
    maxTemp = np.amax(temperatures.data)
    print "Range of temperatures is", minTemp, "to", maxTemp

    # Add a new coordinate containing the year.
    icat.add_year(temperatures, 'time')
    years = temperatures.coord('year')
    
    # Set the limits for the loop over years.  
    minTime = 0
    maxTime = temperatures.shape[0]

    print "Making images from year", years[minTime].points[0], "to", years[maxTime-1].points[0]

    for time in range(minTime, maxTime):

       # Contour plot the temperatures and add the coastline.
       iplt.contourf(temperatures[time], 10, vmin=minTemp, vmax=maxTemp, cmap='hot')
       plt.gca().coastlines()
       
       # We need to fix the boundary of the figure (otherwise we get a black border at left & top).
       # Cartopy removes matplotlib's axes.patch (which normally defines the boundary) and
       # replaces it with outline_patch and background_patch.  It's the former which is causing
       # the black border.  Get the axis object and make its outline patch invisible.
       ax = plt.gca()
       ax.outline_patch.set_visible(False)

       # Extract the year value and display it (coordinates used in locating the text are
       # those of the data).
       year = years[time].points[0]
       plt.text(0, -60, year, horizontalalignment='center') 
       
       # Now save the plot in an image file.  The files are numbered sequentially, starting
       # from 000.png; this is so that the ffmpeg command can grok them.
       filename = "%03d.png" % time
       plt.savefig(filename, bbox_inches='tight', pad_inches=0)
       
       # Discard the figure (otherwise the text will be overwritten
       # by the next iteration).
       plt.close()

    # Now make the movie from the image files by spawning the ffmpeg command.
    # The options (of which there are many) are somewhat arcane, but these ones work.
    print "Converting images to movie..."
    options = "-r 5 -vcodec png -y -i %03d.png -r 5 -vcodec msmpeg4v2 -qblur 0.01 -qscale 5"
    SpawnCommand("ffmpeg " + options + " plotTemperatures.avi")
Пример #25
0
    def test_params(self):
        c = iplt.contourf(self.cube, self.few)
        self.check_graphic()

        iplt.contourf(self.cube, self.few_levels)
        self.check_graphic()

        iplt.contourf(self.cube, self.many_levels)
        self.check_graphic()
Пример #26
0
def calculate_timescales(cubes, stellar_constant=837):
    
    """ Implements formula from Koll & Abbot 2016 for:
        Timescale for equatorial waves to transport energy across the planet
        Atmosphere's radiative cooling time
        Stellar constant for FAST experiment: 1100
        Stellar constant for SLOW experiment: 420                        """

# I made every conceivable kind of error while writing this function    

    for cube in cubes:
        if cube.long_name == 'surface_diffuse_albedo_assuming_no_snow': # long name not standard name
            albedo = cube.copy()
        # if cube.standard_name == 'specific_humidity':
        #     q = cube.copy()
            
    R = 297.0 # gas constant for air in J/kgK, from UM Planet Constants
    a = 7160000 # planet's radius in m, from UM Planet Constants
    g = 10.9 # mean gravity in m/s2, from UM Planet Constants
    sigma = 5.67e-8 # Stefan-Boltzmann constant, SI units NOT BOLTZMANN'S CONSTANT GODDAMN ONLY 20 ORDERS OF MAGNITUDE OFF
    pressure = 100000 # surface pressure in Pa, from UM Planet Constants DO NOT PUT A COMMA IN HERE!! NUMPY NOT LIKE!!
    cp = 1038 # specific heat capacity at constant pressure for N2, J/kgK
#    solar_constant = 0.0017*3.828e26 # luminosity of Proxima Centauri in W, wrong constant, WHY DID U USE THE SYMBOL FOR STELLAR LUMINOSITY THEN DANIEL AND DORIAN
    
    mean_albedo = albedo.collapsed(['time','pseudo_level'], iris.analysis.MEAN)
    iplt.contourf(mean_albedo, brewer_bg.N, cmap=brewer_bg)
    ax = plt.gca()
    ax.gridlines(draw_labels=True)
    plt.title('Mean Surface Albedo [K]', y=1.20)
    plt.colorbar(pad=0.1)
    plt.show()
    
    lats = albedo.coord('latitude')
    longs = albedo.coord('longitude')

    if lats.bounds == None:
        albedo.coord('latitude').guess_bounds()
    if longs.bounds == None:
        albedo.coord('longitude').guess_bounds()
    
    global_grid = iris.analysis.cartography.area_weights(albedo)
    
    alpha = albedo.collapsed(['latitude', 'longitude', 'time', 'pseudo_level'], iris.analysis.MEAN, weights=global_grid)
    alpha = alpha.data   
    
    Teq = ((stellar_constant*(1-alpha))/(4*sigma))**(1/4) # brackets matter
    cwave = R*np.sqrt(Teq/cp)  
    twave = a/cwave
    trad = (cp*pressure)/(g*sigma*(Teq**3)) 
    ratio = twave/trad
    
    print('Ratio of wave to radiative timescale is ' + str(ratio))
    print('Wave timescale is ' + str(twave) + ' seconds')
    print('Radiative timescale is ' + str(trad) + ' seconds')
    
    return ratio
Пример #27
0
def plot_maps(obs, cubelist_dict, plot_order, figfile, season):
    fig = plt.figure(figsize=(3.5, 3))
    axx = fig.add_subplot(221, projection=ccrs.PlateCarree())
    plot1 = iplt.pcolormesh(obs.collapsed('time', iana.MEAN),
                            cmap=cm.get_cmap('terrain_r'),
                            vmin=0,
                            vmax=7)
    plt.title('a. observations ({})'.format(season.upper()), fontsize=8)
    cbar = plt.colorbar(
        plot1,
        cax=plt.gcf().add_axes((0.02, 0.1, 0.43, 0.02)),
        orientation='horizontal',
    )
    letter_dict = {'PRIMAVERA': 'b', 'EUR-44': 'd', 'EUR-11': 'c'}
    cbar.ax.tick_params(labelsize=8)
    plt.title('mm/day', fontsize=8, y=0.7)
    axx.set_extent([-22, 41, 33, 70])
    for num, dataset in enumerate(plot_order, 2):
        numnum = '22' + str(num)
        axx = fig.add_subplot(int(numnum), projection=ccrs.PlateCarree())
        model = cubelist_dict[dataset][0].collapsed('member_number', iana.MEAN)
        #plot = iplt.pcolormesh(model-obs, cmap=cm.get_cmap('RdBu'), vmin = -2, vmax=2)
        levels = np.linspace(-2, 2, 11)
        extend = 'both'
        sig_val = calculate_sig_val(obs, cubelist_dict[dataset][0])
        cube2plot = model - obs.collapsed('time', iana.MEAN)
        cmap = cm.get_cmap('RdBu', 12)
        colors = np.concatenate([
            cmap(range(0, 12)),
        ])
        cmap1, norm = from_levels_and_colors(levels, colors, extend='both')
        plot = iplt.pcolormesh(cube2plot, norm=norm, cmap=cmap1)
        global_mask = generate_global_pvalue_mask(sig_val.data, sig_lev=0.1)
        cube2plot = mask_cube_where(cube2plot, global_mask)
        iplt.contourf(cube2plot,
                      levels=levels,
                      cmap=cm.get_cmap('RdBu'),
                      extend=extend,
                      hatches=['.....'],
                      zorder=10,
                      alpha=0.5)

        plt.title('{}. {} - observations'.format(letter_dict[dataset],
                                                 dataset),
                  fontsize=8)
        axx.set_extent([-22, 41, 33, 70])
    cbar = plt.colorbar(
        plot,
        cax=plt.gcf().add_axes((0.52, 0.1, 0.43, 0.02)),
        orientation='horizontal',
    )
    cbar.ax.tick_params(labelsize=8)
    plt.title('mm/day', fontsize=8, y=0.7)
    plt.box(False)
    plt.tight_layout(rect=[0, 0.12, 1, 1], pad=0.05)
    plt.savefig(figfile + '_'.join(r for r in plot_order) + '.png', dpi=300)
Пример #28
0
def plot_funct(cubes,vmin,vmax,sig=0.10,hatches=False):
    reg = cubes[0].copy()
    cor = cubes[1].copy()
    pval = cubes[-1].copy()
    qplt.pcmeshclf(reg,vmin=-vmin,vmax=vmax,cmap=mc.jetwhite())
    if hatches:
        pval.data = np.ma.masked_greater(pval.data,sig)
        iplt.contourf(pval,hatches=[".."],colors="none",alpha=0.000001)
    name=reg.long_name.replace(" ","_")
    plt.savefig('./figures/'+name+'.amip.ens2.pdf')
Пример #29
0
    def test_skip_contour(self):
        # Contours should not be added if data is all below second level.  See #4086.
        cube = simple_2d()

        levels = [5, 15, 20, 200]
        colors = ["b", "r", "y"]

        with mock.patch("matplotlib.pyplot.contour") as mocked_contour:
            iplt.contourf(cube, levels=levels, colors=colors, antialiased=True)

        mocked_contour.assert_not_called()
Пример #30
0
def cross_sections(tracers, theta, rh, z_bl, fig):
    # Plot each cube separately
    for n, cube in enumerate(tracers):
        row = n / ncols
        col = n - row * ncols
        ax = plt.subplot2grid((nrows, ncols), (row, col))

        # Interpolate along the cross section
        cube = cs_cube(cube, xs, xf, ys, yf)
        coords = ['grid_longitude', 'altitude']

        # Make the plot
        im = iplt.contourf(cube,
                           even_cscale(2),
                           coords=coords,
                           cmap='coolwarm',
                           extend='both')
        cs = iplt.contour(theta,
                          theta_levs,
                          coords=coords,
                          colors='k',
                          linewidths=2)
        iplt.plot(z_bl.coord('grid_longitude'), z_bl, color='y')
        iplt.contour(rh, [0.8], coords=coords, colors='w')
        iplt.contourf(rh, [0.8, 2],
                      coords=coords,
                      colors='None',
                      hatches=['.'])
        plt.title(second_analysis.all_diagnostics[cube.name()].symbol)

        if n == 0:
            plt.clabel(cs, fmt='%1.0f', colors='k')
        ax.set_ylim(0, 7)

        if n < 4:
            ax.set_xticks([])

    # Add letter labels to panels
    for n, ax in enumerate(fig.axes):
        multilabel(ax, n)

    # Add colorbar at bottom of figure
    cbar = plt.colorbar(im,
                        ax=fig.axes,
                        orientation='horizontal',
                        fraction=0.05,
                        spacing='proportional')
    cbar.set_label('PVU')
    cbar.set_ticks(np.linspace(-2, 2, 9))

    fig.text(0.075, 0.58, 'Height (km)', va='center', rotation='vertical')
    fig.text(0.5, 0.2, 'Grid Longitude', ha='center')
    return
Пример #31
0
 def test_coords(self):
     # Pass in dimension coords.
     rlat = self.cube.coord('grid_latitude')
     rlon = self.cube.coord('grid_longitude')
     iplt.contourf(self.cube, coords=[rlon, rlat])
     plt.gca().coastlines()
     self.check_graphic()
     # Pass in auxiliary coords.
     lat = self.cube.coord('latitude')
     lon = self.cube.coord('longitude')
     iplt.contourf(self.cube, coords=[lon, lat])
     plt.gca().coastlines()
     self.check_graphic()
Пример #32
0
 def test_coords(self):
     # Pass in dimension coords.
     rlat = self.cube.coord('grid_latitude')
     rlon = self.cube.coord('grid_longitude')
     iplt.contourf(self.cube, coords=[rlon, rlat])
     plt.gca().coastlines()
     self.check_graphic()
     # Pass in auxiliary coords.
     lat = self.cube.coord('latitude')
     lon = self.cube.coord('longitude')
     iplt.contourf(self.cube, coords=[lon, lat])
     plt.gca().coastlines()
     self.check_graphic()
Пример #33
0
    def test_apply_contour_nans(self):
        # Presence of nans should not prevent contours being added.
        cube = simple_2d()
        cube.data = cube.data.astype(np.float_)
        cube.data[0, 0] = np.nan

        levels = [2, 4, 6, 8]
        colors = ["b", "r", "y"]

        with mock.patch("matplotlib.pyplot.contour") as mocked_contour:
            iplt.contourf(cube, levels=levels, colors=colors, antialiased=True)

        mocked_contour.assert_called_once()
Пример #34
0
def make_plots(forecast, analysis, variable, levels, units, errlevs, clevs,
               cmap1='plasma', cmap='coolwarm', mask=None):
    # Extract data and errors
    f = convert.calc(variable, forecast, levels=levels)[0]
    a = convert.calc(variable, analysis, levels=levels)[0]
    err = f - a

    for cube in [f, a, err]:
        cube.convert_units(units)

    if mask is not None:
        for cube in [f, a]:
            cube.data = np.ma.masked_where(mask, cube.data)

    # Initialise the plot
    plt.figure(figsize=(18, 15))

    # Plot absolute values
    plt.subplot2grid((25, 4), (0, 0), colspan=2, rowspan=10)
    im = iplt.contourf(f, clevs, extend='both', cmap=cmap1)
    #iplt.contour(f, [2], colors='k')
    plt.title('(a)'.ljust(28) + 'Forecast'.ljust(35))
    add_map()

    plt.subplot2grid((25, 4), (0, 2), colspan=2, rowspan=10)
    im = iplt.contourf(a, clevs, extend='both', cmap=cmap1)
    #iplt.contour(a, [2], colors='k', linestyles='--')
    plt.title('(b)'.ljust(28) + 'Analysis'.ljust(35))
    add_map()

    ax = plt.subplot2grid((25, 4), (10, 1), colspan=2, rowspan=1)
    cbar = plt.colorbar(im, cax=ax, orientation='horizontal')
    cbar.set_label(units)
    # cbar.set_ticks(range(11))

    # Plot error
    plt.subplot2grid((25, 4), (13, 1), colspan=2, rowspan=10)
    im = iplt.contourf(err, errlevs, cmap=cmap, extend='both')
    #iplt.contour(f, [2], colors='k')
    #iplt.contour(a, [2], colors='k', linestyles='--')
    plt.title('(c)'.ljust(20) + 'Forecast Minus Analysis.'.ljust(38))
    add_map()

    ax = plt.subplot2grid((25, 4), (23, 1), colspan=2, rowspan=1)
    cbar = plt.colorbar(im, cax=ax, orientation='horizontal',
                        spacing='proportional')
    errlevs.append(0)
    cbar.set_ticks(errlevs)
    cbar.set_label(units)

    return
Пример #35
0
    def test_ij_directions(self):
        def old_compat_load(name):
            cube = iris.load(
                tests.get_data_path(('GRIB', 'ij_directions', name)))[0]
            return [cube]

        cubes = old_compat_load("ipos_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jpos.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ipos_jpos cube")
        self.check_graphic()

        cubes = old_compat_load("ipos_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jneg.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ipos_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jneg.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ineg_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jpos.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ineg_jpos cube")
        self.check_graphic()
Пример #36
0
    def test_ij_directions(self):

        def old_compat_load(name):
            cube = iris.load(tests.get_data_path(('GRIB', 'ij_directions',
                                                  name)))[0]
            return [cube]

        cubes = old_compat_load("ipos_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jpos.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ipos_jpos cube")
        self.check_graphic()

        cubes = old_compat_load("ipos_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ipos_jneg.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ipos_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jneg.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jneg.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ineg_jneg cube")
        self.check_graphic()

        cubes = old_compat_load("ineg_jpos.grib2")
        self.assertCML(cubes, ("grib_load", "ineg_jpos.cml"))
        iplt.contourf(cubes[0])
        plt.gca().coastlines()
        plt.title("ineg_jpos cube")
        self.check_graphic()
Пример #37
0
def plot_cross_section(cube, pv, theta, theta_e, z_bl, rh, ax, n, ylims):
    # Make the plot
    if cube.units == 'K':
        im = iplt.contourf(cube,
                           even_cscale(20),
                           coords=coords,
                           cmap='coolwarm',
                           extend='both')
    elif cube.units == 'PVU':
        im = iplt.contourf(cube,
                           even_cscale(2),
                           coords=coords,
                           cmap='coolwarm',
                           extend='both')
    else:
        print(cube.units)

    iplt.contour(pv, [2], colors='k', coords=coords)

    cs_theta = iplt.contour(theta,
                            theta_levs,
                            coords=coords,
                            colors='k',
                            linewidths=1,
                            linestyles='-')

    cs_theta_e = iplt.contour(theta_e,
                              theta_levs,
                              coords=coords,
                              colors='w',
                              linewidths=1,
                              linestyles='-')

    iplt.plot(z_bl.coord('grid_longitude'), z_bl, color='y')
    iplt.contour(rh, [0.8], coords=coords, colors='grey')
    iplt.contourf(rh, [0.8, 2], coords=coords, colors='None', hatches=['.'])
    plt.title(second_analysis.all_diagnostics[cube.name()].symbol)

    if n == 0:
        plt.clabel(cs_theta, fmt='%1.1f')
        plt.clabel(cs_theta_e, fmt='%1.1f')
    ax.set_ylim(*ylims)

    if n < (nrows - 1) * ncols:
        ax.set_xticks([])

    if n % ncols != 0:
        ax.set_yticks([])

    return im
Пример #38
0
    def test_apply_contour_nans(self):
        # Presence of nans should not prevent contours being added.
        cube = simple_2d()
        cube.data = cube.data.astype(np.float_)
        cube.data[0, 0] = np.nan

        levels = [2, 4, 6, 8]
        colors = ["b", "r", "y"]

        iplt.contourf(cube, levels=levels, colors=colors, antialiased=True)

        ax = plt.gca()
        # If contour has been called, last collection will be a LineCollection.
        self.assertIsInstance(ax.collections[-1],
                              matplotlib.collections.LineCollection)
Пример #39
0
def contourf(cube, *args, **kwargs):
    """
    Draws filled contours on a labelled plot based on the given Cube.

    With the basic call signature, contour "level" values are chosen
    automatically::

        contour(cube)

    Supply a number to use *N* automatically chosen levels::

        contour(cube, N)

    Supply a sequence *V* to use explicitly defined levels::

        contour(cube, V)

    See :func:`iris.plot.contourf` for details of valid keyword arguments.

    """
    coords = kwargs.get('coords')
    axes = kwargs.get('axes')
    result = iplt.contourf(cube, *args, **kwargs)
    _label_with_points(cube, result, coords=coords, axes=axes)
    return result
Пример #40
0
def plot_cube(cube, pressure_level=None):

    metadata = {}
    level, is_3d, cslice = cube_level(cube)
    metadata['is_3d'] = is_3d 
    metadata['pressure_level'] = level 

    fig = plt.figure()
    
    log.info('Preparing plot for %s at level %s' % (cslice.name(), level))
    metadata['name'] = cslice.name() 
    ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180))
    ax.coastlines()
    fig.add_axes(ax)
             
    gl = ax.gridlines(draw_labels=True)
    gl.xlabels_top = False
    gl.ylabels_right = False
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER
    gl.xlocator = mticker.FixedLocator([100, 140, 180, -140])
    
    contours = iplt.contourf(cslice, axes=ax)
    cb = plt.colorbar(contours, orientation='horizontal')
    cb.ax.set_xlabel(cslice.units)
    cb.ax.set_aspect(0.03)
             
    ax.set_xlabel('longitude')
    ax.set_ylabel('latitude')
    metadata['time'] = cube.coord('time').units.num2date(cube.coord('time').points[0]).strftime('%Y-%m-%d_%H:%M:%S')
    ax.set_title('%s %s (level: %s)' % (cslice.name(), metadata['time'], level))
             
    return fig, metadata
Пример #41
0
def main():
    fname = iris.sample_data_path("NAME_output.txt")

    boundary_volc_ash_constraint = iris.Constraint("VOLCANIC_ASH_AIR_CONCENTRATION", flight_level="From FL000 - FL200")

    # Callback shown as None to illustrate where a cube-level callback function would be used if required
    cube = iris.load_cube(fname, boundary_volc_ash_constraint, callback=None)

    # draw contour levels for the data (the top level is just a catch-all)
    levels = (0.0002, 0.002, 0.004, 1e10)
    cs = iplt.contourf(cube, levels=levels, colors=("#80ffff", "#939598", "#e00404"))

    # draw a black outline at the lowest contour to highlight affected areas
    iplt.contour(cube, levels=(levels[0], 100), colors="black")

    # set an extent and a background image for the map
    ax = plt.gca()
    ax.set_extent((-90, 20, 20, 75))
    ax.stock_img("ne_shaded")

    # make a legend, with custom labels, for the coloured contour set
    artists, _ = cs.legend_elements()
    labels = [
        r"$%s < x \leq %s$" % (levels[0], levels[1]),
        r"$%s < x \leq %s$" % (levels[1], levels[2]),
        r"$x > %s$" % levels[2],
    ]
    ax.legend(artists, labels, title="Ash concentration / g m-3", loc="upper left")

    time = cube.coord("time")
    time_date = time.units.num2date(time.points[0]).strftime(UTC_format)
    plt.title("Volcanic ash concentration forecast\nvalid at %s" % time_date)

    iplt.show()
Пример #42
0
def animation_plot(i, pressure, wind, direction, step=24):
    """
    Function to update the animation frame.

    """
    # Clear figure to refresh colorbar
    plt.gcf().clf()

    ax = plt.axes(projection=ccrs.Mercator())
    ax.set_extent([-10.5, 3.8, 48.3, 60.5], crs=ccrs.Geodetic())

    contour_wind = iplt.contourf(wind[i][::10, ::10], cmap='YlGnBu',
                                 levels=range(0, 31, 5))
    contour_press = iplt.contour(pressure[i][::10, ::10], colors='white',
                                 linewidth=1.25, levels=range(938, 1064, 4))
    plt.clabel(contour_press, inline=1, fontsize=14, fmt='%i', colors='white')
    quiver_plot(wind[i], direction[i], step)
    plt.gca().coastlines(resolution='50m')

    time_points = pressure[i].coord('time').points
    time = str(pressure[i].coord('time').units.num2date(time_points)[0])
    plt.gca().set_title(time)

    colorbar = plt.colorbar(contour_wind)
    colorbar.ax.set_ylabel('Wind speed ({})'.format(str(wind[i].units)))
Пример #43
0
def plot_hovmoller(nc_path, var, out_path, do_latitude=True, xlabel='', ylabel='', title='', cbar=''):
    """
    Ref: http://scitools.org.uk/iris/docs/v0.9.1/examples/graphics/hovmoller.html
    :param nc_path:
    :param var:
    :param out_path:
    :param do_latitude:
    :param xlabel:
    :param ylabel:
    :param title:
    :param cbar:
    :return:
    """
    logger.info('Plot hovmoller')
    # TODO: Iris install is not working on mac os x
    if os.name == 'mac' or os.name == 'posix':
        return
    import iris
    import iris.plot as iplt
    iris.FUTURE.netcdf_promote = True
    cubes = iris.load(nc_path, var)

    # Take the mean over latitude/longitude
    if do_latitude:
        cube = cubes[0].collapsed('latitude', iris.analysis.MEAN)
    else:
        cube = cubes[0].collapsed('longitude', iris.analysis.MEAN)

    # Create the plot contour with 20 levels
    iplt.contourf(cube, 20, cmap=palettable.colorbrewer.diverging.RdYlGn_9.mpl_colormap)
    if not do_latitude:
        plt.ylabel(xlabel)  # Latitude
        plt.xlabel(ylabel)  # Years
    else:
        plt.ylabel(ylabel)  # Years
        plt.xlabel(xlabel)  # Longitude
    plt.title(title)
    plt.colorbar(orientation='horizontal', extend='both', drawedges=False, spacing='proportional').set_label(cbar)

    # Stop matplotlib providing clever axes range padding and do not draw gridlines
    plt.grid(b=False)
    plt.axis('tight')
    plt.tight_layout()
    plt.savefig(out_path, dpi=constants.DPI)
    plt.close()
def plot_data(cube, month, gridlines=False, levels=None):
    """Plot the data."""

    if not levels:
        levels = numpy.arange(0, 10)

    fig = plt.figure(figsize=[12,5])    
    iplt.contourf(cube, cmap=cmocean.cm.haline_r, 
                  levels=levels,
                  extend='max')

    plt.gca().coastlines()
    if gridlines:
        plt.gca().gridlines()
    cbar = plt.colorbar()
    cbar.set_label(str(cube.units))
    
    title = '%s precipitation climatology (%s)' %(cube.attributes['model_id'], month)
    plt.title(title)
Пример #45
0
 def test_cmap_override(self):
     # Diverging scheme.
     iplt.contourf(self.cube, cmap=mcm.get_cmap(name='BrBu_10'))
     self.check_graphic()
     # Other scheme.
     iplt.contourf(self.cube, cmap=mcm.get_cmap(name='StepSeq'))
     self.check_graphic()
     # Qualitative scheme.
     iplt.contourf(self.cube, cmap=mcm.get_cmap(name='PairedCat_12'))
     self.check_graphic()
     # Sequential scheme.
     iplt.contourf(self.cube, cmap=mcm.get_cmap(name='LBuDBu_10'))
     self.check_graphic()
Пример #46
0
    def test_simple(self):
        # First sub-plot
        plt.subplot(221)
        plt.title('Default')
        iplt.contourf(self.cube)
        plt.gca().coastlines()

        # Second sub-plot
        plt.subplot(222, projection=ccrs.Mollweide(central_longitude=120))
        plt.title('Molleweide')
        iplt.contourf(self.cube)
        plt.gca().coastlines()

        # Third sub-plot (the projection part is redundant, but a useful
        # test none-the-less)
        ax = plt.subplot(223, projection=iplt.default_projection(self.cube))
        plt.title('Native')
        iplt.contour(self.cube)
        ax.coastlines()

        # Fourth sub-plot
        ax = plt.subplot(2, 2, 4, projection=ccrs.PlateCarree())
        plt.title('PlateCarree')
        iplt.contourf(self.cube)
        ax.coastlines()

        self.check_graphic()
def main():
    fname = iris.sample_data_path('NAME_output.txt')

    boundary_volc_ash_constraint = iris.Constraint('VOLCANIC_ASH_AIR_CONCENTRATION', flight_level='From FL000 - FL200')

    # Callback shown as None to illustrate where a cube-level callback function would be used if required
    cube = iris.load_strict(fname, boundary_volc_ash_constraint, callback=None)

    map = iplt.map_setup(lon_range=[-70, 20], lat_range=[20, 75], resolution='i')
    
    map.drawcoastlines()
    
    iplt.contourf(cube, 
                        levels=(0.0002, 0.002, 0.004, 1),
                        colors=('#80ffff', '#939598', '#e00404'),
                        extend='max'
                  )
    
    time = cube.coord('time')
    time_date = time.units.num2date(time.points[0]).strftime(UTC_format)
    plt.title('Volcanic ash concentration forecast\nvalid at %s' % time_date)

    plt.show()
Пример #48
0
    def test_simple(self):
        # First sub-plot
        plt.subplot(221)
        plt.title('Default')

        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Second sub-plot
        plt.subplot(222)
        plt.title('Molleweide')

        iplt.map_setup(projection='moll', lon_0=120)
        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Third sub-plot
        plt.subplot(223)
        plt.title('Native')

        iplt.map_setup(cube=self.cube)
        iplt.contourf(self.cube)

        map = iplt.gcm()
        map.drawcoastlines()

        # Fourth sub-plot
        plt.subplot(224)
        plt.title('Three/six level')

        iplt.contourf(self.cube, 3)
        iplt.contour(self.cube, 6)

        map = iplt.gcm()
        map.drawcoastlines()

        self.check_graphic()
Пример #49
0
 def test_simple(self):
     iplt.contourf(self.cube)
     self.check_graphic()
Пример #50
0
 def test_unmappable(self):
     cube = self.cube[0, 0]
     cube.coord('grid_longitude').standard_name = None
     iplt.contourf(cube)
     self.check_graphic()
Пример #51
0
 def test_contourf(self):
     cube = self.cube[0, 0]
     iplt.contourf(cube)
     self.check_graphic()
Пример #52
0
    def test_keywords(self):
        iplt.contourf(self.cube, levels=self.few_levels)
        self.check_graphic()

        iplt.contourf(self.cube, levels=self.many_levels, alpha=0.5)
        self.check_graphic()
def main():
 
# Load diff cube
                                
 gl = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/dklz/dklzq/%s.pp' % pp_file
 glob = iris.load_cube(gl)

 for experiment_id in experiment_ids:

  expmin1 = experiment_id[:-1]
  pfile = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/%s/%s/%s.pp' % (expmin1, experiment_id, pp_file)

  pcube = iris.load_cube(pfile)
  
  lat = pcube.coord('grid_latitude').points
  lon = pcube.coord('grid_longitude').points

  cs = pcube.coord_system('CoordSystem')

  if isinstance(cs, iris.coord_systems.RotatedGeogCS):
        print ' %s - Unrotate pole %s' % (experiment_id,cs)

        lons, lats = np.meshgrid(lon, lat)

        lons,lats = iris.analysis.cartography.unrotate_pole(lons,lats, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude)
       
        lon=lons[0]
        lat=lats[:,0]
        
        #pcube.remove_coord('grid_latitude')
        #pcube.remove_coord('grid_longitude')
        #pcube.add_dim_coord(iris.coords.DimCoord(points=lat, standard_name='grid_latitude', units='degrees', coord_system=csur), lat_dim_coord)
        #pcube.add_dim_coord(iris.coords.DimCoord(points=lon, standard_name='grid_longitude', units='degrees', coord_system=csur), lon_dim_coord)

  lon_min=np.min(lon)
  lon_max=np.max(lon)
  
  lon_low_tick=lon_min -(lon_min%divisor)
  lon_high_tick=math.ceil(lon_max/divisor)*divisor

  lat_min=np.min(lat)
  lat_max=np.max(lat)
  lat_low_tick=lat_min - (lat_min%divisor)
  lat_high_tick=math.ceil(lat_max/divisor)*divisor

  glob.units=pcube.units
  pcubediff=pcube-glob
  plt.figure(figsize=(8,8))
         
  cmap= cmap=plt.cm.RdBu_r
    
  ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_min+degs_crop_left,lon_max-degs_crop_right,lat_min+degs_crop_bottom,lat_max-degs_crop_top))

  clevs = np.linspace(min_contour, max_contour,9)
  cont = iplt.contourf(pcubediff, clevs, cmap=cmap, extend='both')
                     
  #plt.clabel(cont, fmt='%d')
  #ax.stock_img()
  ax.coastlines(resolution='110m', color='#262626') 
                     
  gl = ax.gridlines(draw_labels=True,linewidth=0.5, color='#262626', alpha=0.5, linestyle='--')
  gl.xlabels_top = False
  gl.ylabels_right = False
            #gl.xlines = False
  dx, dy = 10, 10

  gl.xlocator = mticker.FixedLocator(range(int(lon_low_tick),int(lon_high_tick)+dx,dx))
  gl.ylocator = mticker.FixedLocator(range(int(lat_low_tick),int(lat_high_tick)+dy,dy))
  gl.xformatter = LONGITUDE_FORMATTER
  gl.yformatter = LATITUDE_FORMATTER
  
  gl.xlabel_style = {'size': 12, 'color':'#262626'}
  #gl.xlabel_style = {'color': '#262626', 'weight': 'bold'}
  gl.ylabel_style = {'size': 12, 'color':'#262626'}         

  cbar = plt.colorbar(cont, orientation='horizontal', pad=0.05, extend='both', format = '%d')
  #cbar.set_label('') 
  cbar.set_label(pcube.units, fontsize=10, color='#262626')
  cbar.set_ticks(np.arange(min_contour, max_contour+tick_interval,tick_interval))
  ticks = (np.arange(min_contour, max_contour+tick_interval,tick_interval))
  cbar.set_ticklabels(['%.1f' % i for i in ticks])
  main_title='%s - Difference' % pcube.standard_name.title().replace('_',' ')
  model_info=re.sub('(.{68} )', '\\1\n', str(model_name_convert_title.main(experiment_id)), 0, re.DOTALL)
  model_info = re.sub(r'[(\']', ' ', model_info)
  model_info = re.sub(r'[\',)]', ' ', model_info)
  print model_info
  
  if not os.path.exists('%s%s/%s' % (save_path, experiment_id, pp_file)): os.makedirs('%s%s/%s' % (save_path, experiment_id, pp_file))

  plt.savefig('%s%s/%s/%s_%s_notitle_diff_8km.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file), format='png', bbox_inches='tight')

  plt.title('\n'.join(wrap('%s\n%s' % (main_title, model_info), 1000,replace_whitespace=False)), fontsize=16)
 
  #plt.show()
 
  plt.savefig('%s%s/%s/%s_%s_diff_8km.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file), format='png', bbox_inches='tight')
  
  plt.close()
Пример #54
0
 def test_yx_order(self):
     # Do not attempt to draw coastlines as it is not a map.
     iplt.contourf(self.cube, coords=['grid_latitude', 'grid_longitude'])
     self.check_graphic()
     iplt.contourf(self.cube, coords=['latitude', 'longitude'])
     self.check_graphic()
def main():
 #experiment_ids = ['djznw', 'djzny', 'djznq', 'djzns', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq', 'dkbhu', 'djznu', 'dkhgu' ] # All 12
 #experiment_ids = ['djzny', 'djzns', 'djznw', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq' ] 
 #experiment_ids = ['djzny', 'djzns', 'djznu', 'dkbhu', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq', 'dkhgu'] 
 #experiment_ids = ['djzns', 'djznu', 'dkbhu', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq', 'dkhgu'] 
 experiment_ids = ['dklzq', 'dkmbq', 'dkjxq', 'dklwu', 'dklyu', 'djzns']
#experiment_ids = ['djzns' ] 
 #experiment_ids = ['dkhgu','dkjxq']

 for experiment_id in experiment_ids:
  
  model_info=re.sub('(.{68} )', '\\1\n', str(model_name_convert_title.main(experiment_id)), 0, re.DOTALL)
  expmin1 = experiment_id[:-1]
  pfile = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/%s/%s/%s.pp' % (expmin1, experiment_id, pp_file)

     #pc =  iris(pfile)
  pcube = iris.load_cube(pfile)
  pcube=iris.analysis.maths.multiply(pcube,3600)
# For each hour in cube


 # Get min and max latitude/longitude and unrotate  to get min/max corners to crop plot automatically - otherwise end with blank bits on the edges 
  lats = pcube.coord('grid_latitude').points
  lons = pcube.coord('grid_longitude').points
  
  cs = pcube.coord_system('CoordSystem')
  if isinstance(cs, iris.coord_systems.RotatedGeogCS):

      print 'Rotated CS %s' % cs
     
      lon_low= np.min(lons)
      lon_high = np.max(lons)
      lat_low = np.min(lats)
      lat_high = np.max(lats)

      lon_corners, lat_corners = np.meshgrid((lon_low, lon_high), (lat_low, lat_high))
      
      lon_corner_u,lat_corner_u = unrotate.unrotate_pole(lon_corners, lat_corners, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude)
      lon_low = lon_corner_u[0,0]
      lon_high = lon_corner_u[0,1]
      lat_low = lat_corner_u[0,0]
      lat_high = lat_corner_u[1,0]

  else: 
      lon_low= np.min(lons)
      lon_high = np.max(lons)
      lat_low = np.min(lats)
      lat_high = np.max(lats)

  #lon_low= 62
  #lon_high = 102
  #lat_low = -7
  #lat_high = 33

  #lon_high_box = 101.866 
  #lon_low_box = 64.115
  #lat_high_box = 33.
  #lat_low_box =-6.79

  #lon_high = 101.866 
  #lon_low = 64.115
  #lat_high = 33.
  #lat_low =-6.79

  lon_low_tick=lon_low -(lon_low%divisor)
  lon_high_tick=math.ceil(lon_high/divisor)*divisor

  lat_low_tick=lat_low - (lat_low%divisor)
  lat_high_tick=math.ceil(lat_high/divisor)*divisor
 
  print lat_high_tick
  print lat_low_tick
  for t, time_cube in enumerate(pcube.slices(['grid_latitude', 'grid_longitude'])):

   
   print time_cube
    
   # Get mid-point time of averages
  

   h_max = u.num2date(time_cube.coord('time').bounds[0].max()).strftime('%H%M')
   h_min = u.num2date(time_cube.coord('time').bounds[0].min()).strftime('%H%M')

#Convert to India time

   from_zone = tz.gettz('UTC')
   to_zone = tz.gettz('Asia/Kolkata')

   h_max_utc = u.num2date(time_cube.coord('time').bounds[0].max()).replace(tzinfo=from_zone)
   h_min_utc = u.num2date(time_cube.coord('time').bounds[0].min()).replace(tzinfo=from_zone)

   h_max_local = h_max_utc.astimezone(to_zone).strftime('%H%M')
   h_min_local = h_min_utc.astimezone(to_zone).strftime('%H%M')

#m = u.num2date(time_cube.coord('time').bounds[0].mean()).minute
   #h = u.num2date(time_cube.coord('time').bounds[0].mean()).hour

   #if t==0:
   fig = plt.figure(**figprops)
         
    
   ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low+degs_crop_bottom,lat_high-degs_crop_top))
  
  #ax = fig.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low,lat_high))

  #ax = fig.axes(projection=ccrs.PlateCarree())

   cont = iplt.contourf(time_cube, clevs, cmap=cmap, extend='both')

   #del time_cube
                     
  #fig.clabel(cont, fmt='%d')
  #ax.stock_img()
   ax.coastlines(resolution='110m', color='#262626') 
                     
   gl = ax.gridlines(draw_labels=True,linewidth=0.5, color='#262626', alpha=0.5, linestyle='--')
   gl.xlabels_top = False
   gl.ylabels_right = False
            #gl.xlines = False
   dx, dy = 10, 10

   gl.xlocator = mticker.FixedLocator(range(int(lon_low_tick),int(lon_high_tick)+dx,dx))
   gl.ylocator = mticker.FixedLocator(range(int(lat_low_tick),int(lat_high_tick)+dy,dy))
   gl.xformatter = LONGITUDE_FORMATTER
   gl.yformatter = LATITUDE_FORMATTER
  
   gl.xlabel_style = {'size': 12, 'color':'#262626'}
  #gl.xlabel_style = {'color': '#262626', 'weight': 'bold'}
   gl.ylabel_style = {'size': 12, 'color':'#262626'}         

   cbar = fig.colorbar(cont, orientation='horizontal', pad=0.05, extend='both')
   cbar.set_label('mm/h', fontsize=10, color='#262626') 
  #cbar.set_label(time_cube.units, fontsize=10, color='#262626')
   cbar.set_ticks(np.arange(min_contour, max_contour+tick_interval,tick_interval))
   cbar.set_ticklabels(['${%.1f}$' % i for i in ticks])
   cbar.ax.tick_params(labelsize=10, color='#262626')

 #   fig.canvas.draw()
  #  background = fig.canvas.copy_from_bbox(fig.bbox)

  
 #   fig = plt.figure(frameon=False,**figprops)
      # make sure frame is off, or everything in existing background
      # will be obliterated.
 #   ax = fig.add_subplot(111,frameon=False)
# restore previous background.
 #   fig.canvas.restore_region(background)

  #  time_cube=iris.analysis.maths.multiply(time_cube,3600)
  #  cont = iplt.contourf(time_cube, clevs, cmap=cmap, extend='both')
    
 #print cont.collections()
   #################################################################
    ## Bug fix for Quad Contour set not having attribute 'set_visible'

      # def setvisible(self,vis):
    #       for c in self.collections: c.set_visible(vis)
     #  cont.set_visible = types.MethodType(setvisible,)
     #  cont.axes = plt.gca()
     #  cont.figure=fig
    ####################################################################

   #ims.append([im])

   
   main_title='Mean Rainfall for EMBRACE Period -%s-%s UTC (%s-%s IST)' % (h_min, h_max, h_min_local, h_max_local)
  #main_title=time_cube.standard_name.title().replace('_',' ')
  #model_info = re.sub(r'[(\']', ' ', model_info)
  #model_info = re.sub(r'[\',)]', ' ', model_info)
  #print model_info

   if not os.path.exists('%s%s/%s' % (save_path, experiment_id, pp_file)): os.makedirs('%s%s/%s' % (save_path, experiment_id, pp_file))

   #fig.show()

   fig.savefig('%s%s/%s/%s_%s_%s-%s_notitle.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file, h_min, h_max), format='png', bbox_inches='tight')

   plt.title('%s-%s UTC    %s-%s IST' % (h_min,h_max, h_min_local, h_max_local))

   fig.savefig('%s%s/%s/%s_%s_%s-%s_short_title.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file, h_min, h_max), format='png', bbox_inches='tight')

   plt.title('\n'.join(wrap('%s\n%s' % (main_title, model_info), 1000,replace_whitespace=False)), fontsize=16)
  
   fig.savefig('%s%s/%s/%s_%s_%s-%s.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file, h_min, h_max), format='png', bbox_inches='tight')
 
   fig.clf()
   plt.close()
   #del time_cube
   gc.collect()
def main():

 #experiment_ids = ['djzny', 'djzns', 'djznw', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq' ] 
 experiment_ids = ['djzny', 'djzns', 'djznu', 'dkbhu', 'dkjxq', 'dklyu', 'dkmbq', 'dklwu', 'dklzq', 'dkhgu'] 
 #experiment_ids = ['djzns' ] 
 #experiment_ids = ['dkhgu','dkjxq']

 for experiment_id in experiment_ids:

  expmin1 = experiment_id[:-1]
  pfile = '/projects/cascade/pwille/moose_retrievals/%s/%s/%s.pp' % (expmin1, experiment_id, pp_file)

     #pc =  iris(pfile)
  pcube = iris.load_cube(pfile)
  print pcube
     #print pc
 
 # Get min and max latitude/longitude and unrotate  to get min/max corners to crop plot automatically - otherwise end with blank bits on the edges 
  lats = pcube.coord('grid_latitude').points
  lons = pcube.coord('grid_longitude').points
  
  cs = pcube.coord_system('CoordSystem')
  if isinstance(cs, iris.coord_systems.RotatedGeogCS):

      print 'Rotated CS %s' % cs
     
      lon_low= np.min(lons)
      lon_high = np.max(lons)
      lat_low = np.min(lats)
      lat_high = np.max(lats)

      lon_corners, lat_corners = np.meshgrid((lon_low, lon_high), (lat_low, lat_high))
      
      lon_corner_u,lat_corner_u = unrotate.unrotate_pole(lon_corners, lat_corners, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude)
      lon_low = lon_corner_u[0,0]
      lon_high = lon_corner_u[0,1]
      lat_low = lat_corner_u[0,0]
      lat_high = lat_corner_u[1,0]

  else: 
      lon_low= np.min(lons)
      lon_high = np.max(lons)
      lat_low = np.min(lats)
      lat_high = np.max(lats)

  #lon_low= 62
  #lon_high = 102
  #lat_low = -7
  #lat_high = 33

  #lon_high_box = 101.866 
  #lon_low_box = 64.115
  #lat_high_box = 33.
  #lat_low_box =-6.79

  #lon_high = 101.866 
  #lon_low = 64.115
  #lat_high = 33.
  #lat_low =-6.79

  lon_low_tick=lon_low -(lon_low%divisor)
  lon_high_tick=math.ceil(lon_high/divisor)*divisor

  lat_low_tick=lat_low - (lat_low%divisor)
  lat_high_tick=math.ceil(lat_high/divisor)*divisor
 
  print lat_high_tick
  print lat_low_tick
  plt.figure(figsize=(8,8))
         
  cmap=cm.s3pcpn_l
    
  ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low+degs_crop_bottom,lat_high-degs_crop_top))
  
  #ax = plt.axes(projection=ccrs.PlateCarree(), extent=(lon_low,lon_high,lat_low,lat_high))

  #ax = plt.axes(projection=ccrs.PlateCarree())

  clevs = np.linspace(min_contour, max_contour,256)

  pcubeplot=iris.analysis.maths.multiply(pcube,3600)

  cont = iplt.contourf(pcubeplot, clevs, cmap=cmap, extend='both')
                     
  #plt.clabel(cont, fmt='%d')
  #ax.stock_img()
  ax.coastlines(resolution='110m', color='#262626') 
                     
  gl = ax.gridlines(draw_labels=True,linewidth=0.5, color='#262626', alpha=0.5, linestyle='--')
  gl.xlabels_top = False
  gl.ylabels_right = False
            #gl.xlines = False
  dx, dy = 10, 10

  gl.xlocator = mticker.FixedLocator(range(int(lon_low_tick),int(lon_high_tick)+dx,dx))
  gl.ylocator = mticker.FixedLocator(range(int(lat_low_tick),int(lat_high_tick)+dy,dy))
  gl.xformatter = LONGITUDE_FORMATTER
  gl.yformatter = LATITUDE_FORMATTER
  
  gl.xlabel_style = {'size': 12, 'color':'#262626'}
  #gl.xlabel_style = {'color': '#262626', 'weight': 'bold'}
  gl.ylabel_style = {'size': 12, 'color':'#262626'}         

  cbar = plt.colorbar(cont, orientation='horizontal', pad=0.05, extend='both')
  cbar.set_label('mm/h', fontsize=14, color='#262626') 
  #cbar.set_label(pcube.units, fontsize=10, color='#262626')
  cbar.set_ticks(np.arange(min_contour, max_contour+tick_interval,tick_interval))
  ticks = (np.arange(min_contour, max_contour+tick_interval,tick_interval))
  cbar.set_ticklabels(['%.1f' % i for i in ticks])
  cbar.ax.tick_params(labelsize=14, color='#262626')
  
  main_title='Mean Rainfall for EMBRACE Period (smoothed to 24km)'
  #main_title=pcube.standard_name.title().replace('_',' ')
  model_info=re.sub('(.{68} )', '\\1\n', str(model_name_convert_title.main(experiment_id)), 0, re.DOTALL)
  #model_info = re.sub(r'[(\']', ' ', model_info)
  #model_info = re.sub(r'[\',)]', ' ', model_info)
  #print model_info

  if not os.path.exists('%s%s/%s' % (save_path, experiment_id, pp_file)): os.makedirs('%s%s/%s' % (save_path, experiment_id, pp_file))

  plt.savefig('%s%s/%s/%s_%s_notitle.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file), format='png', bbox_inches='tight')

  plt.title('\n'.join(wrap('%s\n%s' % (main_title, model_info), 1000,replace_whitespace=False)), fontsize=16)
 
  #plt.show()
 
  plt.savefig('%s%s/%s/%s_%s.png' % (save_path, experiment_id, pp_file, experiment_id, pp_file), format='png', bbox_inches='tight')
  
  plt.close()
Пример #57
0
w = VectorWind(uwnd, vwnd)

# Compute the streamfunction and velocity potential.
sf, vp = w.sfvp()

# Pick out the field for December.
time_constraint = iris.Constraint(month='Dec')
add_month(sf, 'time', name='month')
add_month(vp, 'time', name='month')
sf_dec = sf.extract(time_constraint)
vp_dec = vp.extract(time_constraint)

# Plot streamfunction.
clevs = [-120, -100, -80, -60, -40, -20, 0, 20, 40, 60, 80, 100, 120]
ax = plt.subplot(111, projection=ccrs.PlateCarree(central_longitude=180))
fill_sf = iplt.contourf(sf_dec * 1e-06, clevs, cmap=plt.cm.RdBu_r,
                        extend='both')
ax.coastlines()
ax.gridlines()
plt.colorbar(fill_sf, orientation='horizontal')
plt.title('Streamfunction ($10^6$m$^2$s$^{-1}$)', fontsize=16)

# Plot velocity potential.
plt.figure()
clevs = [-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10]
ax = plt.subplot(111, projection=ccrs.PlateCarree(central_longitude=180))
fill_vp = iplt.contourf(vp_dec * 1e-06, clevs, cmap=plt.cm.RdBu_r,
                        extend='both')
ax.coastlines()
ax.gridlines()
plt.colorbar(fill_vp, orientation='horizontal')
plt.title('Velocity Potential ($10^6$m$^2$s$^{-1}$)', fontsize=16)
Пример #58
0
 def test_default(self):
     iplt.contourf(self.cube)
     plt.gca().coastlines()
     self.check_graphic()
import iris.plot as iplt
import matplotlib.pyplot as plt
import numpy as np
import re
import string
import itertools

input = '[AAAA]'
n1 = len(input.split(' ')[0]) - 2
s1 = input[n1+2:]
names = [''.join(x)+s1 for x in itertools.product(string.ascii_lowercase, repeat=n1)]

#data from http://cdiac.ornl.gov/ftp/oceans/GLODAP_Gridded_Data/
cube = iris.load('/home/ph290/Downloads/CFC11/CFC11.nc','CFC-11')
cube = cube[0]
cube.coord('depth').points=cube.coord('depth').points*(-1.0)

for i in np.arange(359):
     plt.figure()
     meridional_slice2 = cube.extract(iris.Constraint(longitude=-179.5+i))
     qplt.contourf(meridional_slice2, levels = np.linspace(0.0,8,50), coords=['latitude','depth'])
     #plt.show()
     plt.savefig('/home/ph290/Downloads/anim3/anim_'+names[i]+'.png')

for i in np.arange(359):
    plt.figure()
    iplt.contourf(cube[0], 50)
    plt.gca().coastlines()
    plt.plot([-180+i,-180+i],[-90,90],'k', linewidth = 5)
    plt.savefig('/home/ph290/Downloads/anim4/anim_'+names[i]+'.png')
Пример #60
0
# Create a VectorWind instance to handle the computations.
w = VectorWind(uwnd, vwnd)

# Compute components of rossby wave source: absolute vorticity, divergence,
# irrotational (divergent) wind components, gradients of absolute vorticity.
eta = w.absolutevorticity()
div = w.divergence()
uchi, vchi = w.irrotationalcomponent()
etax, etay = w.gradient(eta)
etax.units = 'm**-1 s**-1'
etay.units = 'm**-1 s**-1'

# Combine the components to form the Rossby wave source term.
S = eta * -1. * div - (uchi * etax + vchi * etay)
S.coord('longitude').attributes['circular'] = True

# Pick out the field for December at 200 hPa.
time_constraint = iris.Constraint(month='Dec')
add_month(S, 'time')
S_dec = S.extract(time_constraint)

# Plot Rossby wave source.
clevs = [-30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30]
ax = plt.subplot(111, projection=ccrs.PlateCarree(central_longitude=180))
fill = iplt.contourf(S_dec * 1e11, clevs, cmap=plt.cm.RdBu_r, extend='both')
ax.coastlines()
ax.gridlines()
plt.colorbar(fill, orientation='horizontal')
plt.title('Rossby Wave Source ($10^{-11}$s$^{-1}$)', fontsize=16)
plt.show()