Пример #1
0
def main():
    # Read the ISHNE file
    global ecg
    ecg = ishne.ISHNE(sys.argv[1])
    ecg.read()

    # number of samples: 0.06 - 0.1 * SAMPLING_RATE (QRS Time: 60-100ms)
    num_samples = int(0.08 * ecg.sampling_rate)
    # The math suggests 16 samples is the width of the QRS complex
    # Measuring the QRS complex for 9004 gives 16 samples
    # Measured correlated peak 7 samples after start of QRS
    h_hat = numpy.zeros(num_samples).astype(numpy.float32)
    # Mexican hats seem to hold a nonzero value between -4 and 4 w/ sigma=1
    sigma = 1.0
    maxval = 4 * sigma
    minval = -maxval

    hat = numpy.zeros(16).astype(numpy.float32)
    mexican_hat(cuda.Out(hat),
                numpy.float32(sigma),
                numpy.float32(minval),
                numpy.float32((maxval - minval) / num_samples),
                grid=(1, 1),
                block=(int(ecg.sampling_rate), 1, 1))

    with Timer() as pre_time:
        d_mlead, length = preprocess(ecg.leads[0], ecg.leads[1], ecg.leads[2],
                                     hat, 1.0)
    with Timer() as time:
        y = get_heartbeat(d_mlead, length)
    print pre_time.interval, time.interval, pre_time.interval + time.interval
    x = numpy.linspace(0, 23, num=len(y))
    plt.figure(2)
    plt.plot(x, y, 'b')
    plt.show()
Пример #2
0
def read_ISHNE(ecg_filename):
    # Read the ISHNE file
    ecg = ishne.ISHNE(ecg_filename)
    ecg.read()
    return ecg
Пример #3
0
import pycuda.autoinit
import pycuda.driver as cuda
import numpy
import matplotlib.pyplot as plt
import ishne
from pycuda.compiler import SourceModule
import sys

with open("wavelet_mod.cu") as wavelet_file:
    mod = SourceModule(wavelet_file.read())

calculate_hats = mod.get_function("calculate_hats")
cross_correlate_with_hat = mod.get_function("cross_correlate_with_hat")

ecg = ishne.ISHNE(sys.argv[1])
ecg.read()
lead = ecg.leads[0].astype(numpy.float32)[:1000]

hats = numpy.zeros(170 * 21).astype(numpy.float32)
correlated = numpy.zeros(1000).astype(numpy.float32)

calculate_hats(cuda.Out(hats), grid=(170, 1), block=(21, 1, 1))

cross_correlate_with_hat(cuda.Out(correlated),
                         cuda.In(lead),
                         cuda.In(hats[:21]),
                         numpy.int32(10000),
                         grid=(1, 1),
                         block=(1000, 1, 1))

plt.figure(1)