for alpha in alpha_list: positive_count = sum([1 for x in X_positive if x >= alpha]) positive_rate = positive_count / float(len(X_positive)) negative_count = sum([1 for x in X_negative if x >= alpha]) negative_rate = negative_count / float(len(X_negative)) roc_X.append(negative_rate) roc_Y.append(positive_rate) #print roc_X plt.plot(roc_X, roc_Y, color="green") classify = IterativeEM() classify.__classify__(vote_list, 2) estimates = classify.__getEstimates__() X_positive = [] X_negative = [] for subject_index, zooniverse_id in enumerate(big_subjectList): probability = estimates[subject_index] wreness_condor = gold_condor[subject_index] if wreness_condor == 0: X_negative.append(probability) else: X_positive.append(probability) alpha_list = X_negative[:] alpha_list.extend(X_positive) alpha_list.sort()
negative_count = sum([1 for x in X_negative if x >= alpha]) negative_rate = negative_count/float(len(X_negative)) roc_X.append(negative_rate) roc_Y.append(positive_rate) #print roc_X plt.plot(roc_X,roc_Y,color="green") classify = IterativeEM() classify.__classify__(vote_list,2) estimates = classify.__getEstimates__() X_positive = [] X_negative = [] for subject_index,zooniverse_id in enumerate(big_subjectList): probability = estimates[subject_index] wreness_condor = gold_condor[subject_index] if wreness_condor == 0: X_negative.append(probability) else: X_positive.append(probability) alpha_list = X_negative[:] alpha_list.extend(X_positive) alpha_list.sort()
votes.append((user_index, animal_index, 1)) if not (animal_index in animal_votes): animal_votes[animal_index] = [1] else: animal_votes[animal_index].append(1) else: votes.append((user_index, animal_index, 0)) if not (animal_index in animal_votes): animal_votes[animal_index] = [0] else: animal_votes[animal_index].append(0) print "=====---" #print votes classify = IterativeEM() classify.__classify__(votes) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii in range(animal_index): x = np.mean(animal_votes[ii]) y = estimates[ii][1] X.append(x)
votes.append((user_index, subject_index, 0)) if not (zooniverse_id in subject_vote): subject_vote[zooniverse_id] = [0] else: subject_vote[zooniverse_id].append(0) except ValueError: votes.append((user_index, subject_index, 0)) if not (zooniverse_id in subject_vote): subject_vote[zooniverse_id] = [0] else: subject_vote[zooniverse_id].append(0) print "=====---" classify = IterativeEM() classify.__classify__(votes) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] for subject_index, zooniverse_id in enumerate(big_subjectList): subject = subject_collection.find_one({"zooniverse_id": zooniverse_id}) if zooniverse_id in subject_vote: x = np.mean(subject_vote[zooniverse_id]) y = estimates[subject_index][1]
for animal,most_likely in zip(animal_votes,plurality_vote): for reported in animal: confusion[reported][most_likely] += 1 confusion = [[max(c/sum(row),0.005) for c in row] for row in confusion] #print (confusion[3][0],confusion[3][3]) confusion_list= individual_confusion(votes,plurality_vote) #for c in confusion_list: # print c #assert False #print votes classify = IterativeEM() classify.__classify__(votes,len(animals),confusion_list) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #print animals #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii,votes in enumerate(animal_votes): percentage = [sum([1 for v in votes if v == a_t])/float(len(votes)) for a_t in range(len(animals))] EM_percentage = estimates[ii]
for animal, most_likely in zip(animal_votes, plurality_vote): for reported in animal: confusion[reported][most_likely] += 1 confusion = [[max(c / sum(row), 0.005) for c in row] for row in confusion] #print (confusion[3][0],confusion[3][3]) confusion_list = individual_confusion(votes, plurality_vote) #for c in confusion_list: # print c #assert False #print votes classify = IterativeEM() classify.__classify__(votes, len(animals), confusion_list) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #print animals #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii, votes in enumerate(animal_votes): percentage = [ sum([1 for v in votes if v == a_t]) / float(len(votes)) for a_t in range(len(animals)) ]
# #print (confusion[3][0],confusion[3][3]) # # X,Y= individual_confusion(votes,plurality_vote) # print X # print Y # plt.hist(X,bins=20) # # plt.plot(X,Y,'.',color="blue") # # plt.plot([X_avg,],[Y_avg,],'.',color="green") # # plt.xlim((-0.05,1.05)) # # plt.ylim((0.95,1.05)) # plt.show() # assert False #print votes classify = IterativeEM() classify.__classify__(votes,len(animals),confusion,gold_values=gold_values) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #print animals #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii,votes in enumerate(animal_votes): percentage = [sum([1 for v in votes if v == a_t])/float(len(votes)) for a_t in range(len(animals))] EM_percentage = estimates[ii]