Пример #1
0
from ivy import treegraph as tg
from collections import Counter
from glob import glob
import numpy as np

ncbi_graph_file = 'ncbi.gt.gz' #taxonomy graph file
cluster_dir = '' #directory of vsearch produced clusters
cutoff = 3 # number of mean absolute devations from median

g = tg.load_taxonomy_graph(ncbi_graph_file)
for clustfile in glob(cluster_dir):
    headers = [ x[1:-1].split('_') for x in open(clustfile) if x[0]=='>' ]
    gi2ti = dict([ (int(a[2:]), int(b[2:])) for a,b in headers ])
    tis = sorted(set(gi2ti.values()))
    rootpaths = [ tg.taxid_rootpath(g, ti) for ti in tis ]
    ## print 'mrca:', g.taxid_name(tg.rootpath_mrca(rootpaths))
    counts = Counter()
    for rp in rootpaths:
        for ti in rp:
            counts[ti] += 1

    def f(rp):
        'steps to most recent common ancestor of any other ti in the cluster'
        for i, ti in enumerate(rp):
            if counts[ti]>1:
                break
        return i

    steps = [ f(rp) for rp in rootpaths ]
    median = np.median(steps)
    absdev = [ abs(x-median) for x in steps ]
Пример #2
0
import ivy, json
from ivy import treegraph as tg
gt = tg.gt

g = tg.load_taxonomy_graph('applications/pta/static/ott2.8.gt.gz')

def buildtree(t, otu_id2data):
    from ivy.tree import Node
    if t.has_key('nodeById'):
        # newer Nexson 1.2.1
        node_id2data = t['nodeById']
    else:
        # older Nexson 1.0.0
        node_id2data = {} 
        for n in t['node']:
            node_id2data[ n['@id'] ] = n
    root = None
    for i, d in node_id2data.iteritems():
        n = Node()
        n.snode_id = i
        n.taxid = None
        if d.get('@root'):
            n.isroot = True
            root = n
        oid = d.get('@otu')
        if oid:
            n.isleaf = True
            try:
                n.otu = otu_id2data[oid]
                n.label = (n.otu.get('^ot:ottTaxonName') or
                           n.otu.get('^ot:originalLabel'))
Пример #3
0
import requests
import ivy
from ivy import treegraph as tg
import graph_tool.all as gt

g = tg.load_taxonomy_graph('ncbi/ncbi.xml.gz')

stree = 2  # Tank & Donoghue 2010 - Campanulidae
u = 'http://reelab.net/phylografter/stree/newick.txt/%s' % stree
lfmt = 'snode.id,ottol_name.ncbi_taxid,otu.label'
p = dict(lfmt=lfmt, ifmt='snode.id')
resp = requests.get(u, params=p)
r = ivy.tree.read(resp.content)
r.ladderize()
ivy.tree.index(r)
for n in r:
    if n.isleaf:
        v = n.label.split('_')
        n.snode_id = int(v[0])
        n.taxid = int(v[1]) if (len(v) > 1 and v[1]
                                and v[1] != 'None') else None
    else:
        n.snode_id = int(n.label)
r.stree = stree

tg.map_stree(g, r)
taxids = set()
for lf in r.leaves():
    taxids.update(lf.taxid_rootpath)
taxg = tg.taxid_new_subgraph(g, taxids)
# taxg is a new graph containing only the taxids in stree
Пример #4
0
        
    newicks = []

    for k, (root, p) in convex.items():
        treegraph.set_vertex_filter(p)
        s = make_newick(root, set([root]))
        treegraph.set_vertex_filter(None)
        names = ','.join([ g.taxid_name(int(x)) for x in k.split('.') ])
        outfile.write('%s\t%s\t%s\t%s;\n' % (pbtree, k, names, s))
        print 'wrote subtree:', names

    for n in r.postiter():
        n.parent = None; del n.children

if __name__ == "__main__":
    merged = {}
    with open('ncbi/merged.dmp') as f:
        for line in f:
            v = line.split()
            merged[int(v[0])] = int(v[2])

    g = tg.load_taxonomy_graph('ncbi/ncbi.xml.gz')

    probfile = open('pb/pb184.readable.problem_subtrees','w')
    outfile = open('pb/pb184.readable.convex_subtrees','w')
    with open('pb/pb184.readable.trees') as f:
        for line in f:
            proc(g, line, merged, probfile, outfile)
    outfile.close()
    probfile.close()
Пример #5
0
import ivy, requests
from ivy import treegraph as tg
from collections import defaultdict
import graph_tool.all as gt

g = tg.load_taxonomy_graph("ncbi/ncbi.xml.gz")

strees = []
i = 1
with open("test_trees.tre") as f:
    for line in f:
        tree = line.split("\t")[3]
        print tree
        r = ivy.tree.read(tree)
        ivy.tree.index(r)
        for n in r:
            if n.isleaf:
                v = n.label.split("_")
                n.snode_id = int(v[0][2:])
                n.taxid = int(v[1][2:]) if (len(v) > 1 and v[1] and v[1] != "None") else None
            else:
                n.snode_id = int(n.id)
        r.stree = i
        strees.append(r)
        i += 1

stree2color = {}
for i, r in enumerate(strees):
    stree2color[r.stree] = tg.color20[i % 20]

taxids = set()
Пример #6
0
	        (ntax_mono + nnodes_resolving)/nnodes_float,
	        # proportion of taxa supported as monophyletic
	        ntax_mono/ntax_total_float,
	        # proportion of taxa contradicted as monophyletic
	        ntax_contradicted/ntax_total_float,
	        # how skeletonized is the tree?
	        (ntax_total + ntax_singleton)/nnodes_float
	        ]
	    line = '\t'.join(map(str, row))
	    tree_outfile.write('{}\n'.format(line))

if __name__ == '__main__':
    #import vis
    
    print "Reading taxonomy graph..."
    g = tg.load_taxonomy_graph('ncbi.gt.gz')
    
    trees_file = 'readable.convex_subtrees.out'

    ## i = 99
    ## line = pull_line(trees_file, i)
    ## v = line.split('\t')
    ## clusterid = v[0]
    ## stree = v[-1]
    ## r = ivy.tree.read(stree)
    ## vis.view(g, r)

    tree_outfile = open('tree_stats.csv','w')
    tree_headers = (
        'treeid clusterid taxid name '
        'ntax ntax_mono ntax_contradiced ntax_softly ntax_singleton '
import ivy, requests
from ivy import treegraph as tg
from collections import defaultdict
import graph_tool.all as gt



taxonomy_graph = '' # name / location of taxonomy graph file 
out_file_name = '' # name of output graph file


g = tg.load_taxonomy_graph(taxonomy_graph)
strees = []
i = 1
with open('convex_subtrees.out') as f:
    for line in f:
        tree = line.split("\t")[-1]
        print tree
        r = ivy.tree.read(tree)
        ivy.tree.index(r)
        for n in r:
            if n.isleaf:
                v = n.label.split('_')
                n.snode_id = int(v[0][2:])
                n.taxid = int(v[1][2:]) if (len(v)>1 and
                                        v[1] and v[1] != 'None') else None
            else:
                n.snode_id = int(n.id)
        r.stree = i
        strees.append(r)
        i += 1
def build_json(choice):


    
    if choice == "1":
        ## Loads a graph with the OTT taxonomy
        taxonomy="ott"
        print "Loading OTT taxonomy into graph..."
        g = tg.load_taxonomy_graph('taxonomy/ott2.2/ott2.2.xml.gz')
        print "OTT taxonomy Graph loaded successfully."
        print "Loading ott-treecache file..."
        datafile = open('trees/ott-treecache.txt', 'r') #read in the treecache file
        print "Loaded."

    elif choice == "2":
        taxonomy="ncbi"
        print "Loading NCBI taxonomy into graph..."
        g = tg.load_taxonomy_graph('taxonomy/ncbi/ncbi.xml.gz')
        print "NCBI taxonomy Graph loaded successfully."
        print "Loading ncbi-treecache file..."
        datafile = open('trees/ncbi-treecache.txt', 'r') #read in the treecache file
        print "Loaded."
    
    data = []
    errors = []
    blacklist = []

    ## Loop all of the entries in the treecache.txt file and assign them to data.
    for row in datafile:
        data.append(row)
        #print row


    ## Creates a Tree Blacklist that will ignore problematic trees that cause crashes based on strange formatting issues until then can be resolved.   
    print "Loading tree blacklist..."
    tree_blacklist = open('trees/tree_blacklist.txt', 'r') #read in the tree blacklist file
    print "Loaded."

    ## Loop all of the entries in the tree_blacklist.txt file and assign them to blacklist.
    for tree in tree_blacklist:
        blacklist.append(tree.strip())

    rowcount = 0

    for row in data: #iterate through each unique stree id in the file allowing the code below to generate the graph, write the JSON and save the file

        active_tree = row.split(":") #split the row from treecache into tree id and newick string tree
        
        if active_tree[0] in blacklist: ## if a tree is in the blacklist, ignore it.
            print ("Tree %s is being ignored as it is black listed." % active_tree[0])
            
        else:
            stree = int(active_tree[0]) # convert tree id string into int
            r = ivy.tree.read(active_tree[1].replace("?", "")) #read the tree, also replacing an extraneous ? characters
            leafcount = 0
            r.ladderize()
            ivy.tree.index(r)
            for n in r:
                if n.isleaf:
                    leafcount = leafcount + 1
                    v = n.label.split('_')
                    n.snode_id = int(v[0])
                    n.taxid = int(v[1]) if (len(v)>1 and
                                            v[1] and v[1] != 'None') else None
                else:
                    n.snode_id = int(n.label)
            if leafcount <= 5000: #check to prune trees that have more than 5000 leaves. They will not display correctly in graph form.
                try: #used to catch all errors from incorrectly formatted trees (ie: ? characters, and other issues)

                    r.stree = stree
                    ### ADD CODE HERE TO SKIP TREES WITH MORE THAN 5000 leaves
                    tg.map_stree(g, r)
                    taxids = set()
                    for lf in r.leaves():
                        taxids.update(lf.taxid_rootpath)
                    taxg = tg.taxid_new_subgraph(g, taxids)
                    # taxg is a new graph containing only the taxids in stree

                    # these properties will store the vertices and edges that are traced
                    # by r
                    verts = taxg.new_vertex_property('bool')
                    edges = taxg.new_edge_property('bool')

                    # add stree's nodes and branches into taxonomy graph
                    tg.merge_stree(taxg, r, stree, verts, edges)
                    # verts and edges now filter the paths traced by r in taxg

                    # next, add taxonomy edges to taxg connecting 'incertae sedis'
                    # leaves in stree to their containing taxa
                    for lf in r.leaves():
                        if lf.taxid and lf.incertae_sedis:
                            taxv = taxg.taxid_vertex[lf.taxid]
                            ev = taxg.edge(taxv, lf.v, True)
                            if ev:
                                assert len(ev)==1
                                e = ev[0]
                            else:
                                e = taxg.add_edge(taxv, lf.v)
                            taxg.edge_in_taxonomy[e] = 1

                    # make a view of taxg that keeps only the vertices and edges traced by
                    # the source tree
                    gv = tg.graph_view(taxg, vfilt=verts, efilt=edges)
                    gv.vertex_strees = taxg.vertex_strees
                    gv.edge_strees = taxg.edge_strees
                    # the following code sets up the visualization
                    ecolor = taxg.new_edge_property('string')
                    for e in taxg.edges():
                        est = taxg.edge_strees[e]
                        eit = taxg.edge_in_taxonomy[e]
                        if len(est) and not eit: ecolor[e] = 'blue'
                        elif len(est) and eit: ecolor[e] = 'green'
                        else: ecolor[e] = 'yellow'

                    ewidth = taxg.new_edge_property('int')
                    for e in taxg.edges():
                        est = taxg.edge_strees[e]
                        if len(est): ewidth[e] = 3
                        else: ewidth[e] = 1

                    vcolor = taxg.new_vertex_property('string')
                    for v in taxg.vertices():
                        if not taxg.vertex_in_taxonomy[v]: vcolor[v] = 'blue'
                        else: vcolor[v] = 'green'

                    vsize = taxg.new_vertex_property('int')
                    for v in taxg.vertices():
                        if taxg.vertex_in_taxonomy[v] or v.out_degree()==0:
                            vsize[v] = 8
                        else: vsize[v] = 2

                    pos, pin = tg.layout(taxg, gv, gv.root, sfdp=True, deg0=195.0,
                                         degspan=150.0, radius=400) 

                    for v in gv.vertices(): pin[v] = 1

                    for e in taxg.edges():
                        src = e.source()
                        tgt = e.target()
                        if not verts[src]:
                            verts[src] = 1
                            pos[src] = [0.0, 0.0]
                            vcolor[src] = 'red'
                        if not verts[tgt]:
                            verts[tgt] = 1
                            pos[tgt] = [0.0, 0.0]
                            vcolor[tgt] = 'red'
                        if not edges[e]:
                            edges[e] = 1
                            ecolor[e] = 'red'
                            ewidth[e] = 1.0
                            gv.wt[e] = 1.0

                    pos = gt.sfdp_layout(gv, pos=pos, pin=pin, eweight=gv.wt, multilevel=False)
                    ### Use function in TreeGraph.py to parse Graph(gv) into JSON
                    print "Generating JSON..."
                    result = tg.graph_json(gv, pos=pos, ecolor=ecolor, ewidth=ewidth, vcolor=vcolor, vsize=vsize)
                    result = result[1:] #strip the original { from the json so we can insert the time stamp
                    date = time.strftime("%Y%m%d%I%M%S") # grab the system date for the filename and convert it to a string
                    treeid = str(stree) # convert stree int into a string
                    timestamp = "{\"timestamp\": \"%s\", " %date
                    final_result = timestamp+result # add date to first line of json file for later parsing
                    path = str(os.path.dirname(os.path.realpath(__file__)))
                    path = path[:-8]
                    path = "%s//%s/" % (path, taxonomy) # build the full path to write the file too
                    filename = "%stree_%s.JSON" % (path, treeid)  # build the full file_name for writing
                    if not os.path.exists(path): ## if directory doesn't exist, create it.
                        os.makedirs(path)
                    
                    f = open(filename, 'w')
                    f.write(final_result)
                    f.close
                    print "Done."
                    rowcount = rowcount + 1

                except: # catch *all* exceptions
                    e = sys.exc_info()[0]
                    e = str(e)
                    treeid = str(stree)
                    print ("Error: %s</p>" % e)
                    errorstring = "Error: " + e + " on Tree: " + treeid # rough hack to store trees with errors and the general error
                    errors.append(errorstring) # store all of the error strings
                    rowcount = rowcount + 1
                    continue ## continue converting the rest of the trees into JSON even if a specific tree has errors
            else:
                print "Tree has more than 5000 leaves. No graph will be generated."

    print "JSON Generation Complete."    
    ## write the error strings to a log file for review later

    if errors:
        with open("error_log.txt", "w+") as error_log:
            pickle.dump(errors, error_log)
def build_json(choice):

    if choice == "1":
        ## Loads a graph with the OTT taxonomy
        taxonomy = "ott"
        print "Loading OTT taxonomy into graph..."
        g = tg.load_taxonomy_graph('taxonomy/ott2.2/ott2.2.xml.gz')
        print "OTT taxonomy Graph loaded successfully."
        print "Loading ott-treecache file..."
        datafile = open('trees/ott-treecache.txt',
                        'r')  #read in the treecache file
        print "Loaded."

    elif choice == "2":
        taxonomy = "ncbi"
        print "Loading NCBI taxonomy into graph..."
        g = tg.load_taxonomy_graph('taxonomy/ncbi/ncbi.xml.gz')
        print "NCBI taxonomy Graph loaded successfully."
        print "Loading ncbi-treecache file..."
        datafile = open('trees/ncbi-treecache.txt',
                        'r')  #read in the treecache file
        print "Loaded."

    data = []
    errors = []
    blacklist = []

    ## Loop all of the entries in the treecache.txt file and assign them to data.
    for row in datafile:
        data.append(row)
        #print row

    ## Creates a Tree Blacklist that will ignore problematic trees that cause crashes based on strange formatting issues until then can be resolved.
    print "Loading tree blacklist..."
    tree_blacklist = open('trees/tree_blacklist.txt',
                          'r')  #read in the tree blacklist file
    print "Loaded."

    ## Loop all of the entries in the tree_blacklist.txt file and assign them to blacklist.
    for tree in tree_blacklist:
        blacklist.append(tree.strip())

    rowcount = 0

    for row in data:  #iterate through each unique stree id in the file allowing the code below to generate the graph, write the JSON and save the file

        active_tree = row.split(
            ":"
        )  #split the row from treecache into tree id and newick string tree

        if active_tree[
                0] in blacklist:  ## if a tree is in the blacklist, ignore it.
            print("Tree %s is being ignored as it is black listed." %
                  active_tree[0])

        else:
            stree = int(active_tree[0])  # convert tree id string into int
            r = ivy.tree.read(active_tree[1].replace(
                "?",
                ""))  #read the tree, also replacing an extraneous ? characters
            leafcount = 0
            r.ladderize()
            ivy.tree.index(r)
            for n in r:
                if n.isleaf:
                    leafcount = leafcount + 1
                    v = n.label.split('_')
                    n.snode_id = int(v[0])
                    n.taxid = int(v[1]) if (len(v) > 1 and v[1]
                                            and v[1] != 'None') else None
                else:
                    n.snode_id = int(n.label)
            if leafcount <= 5000:  #check to prune trees that have more than 5000 leaves. They will not display correctly in graph form.
                try:  #used to catch all errors from incorrectly formatted trees (ie: ? characters, and other issues)

                    r.stree = stree
                    ### ADD CODE HERE TO SKIP TREES WITH MORE THAN 5000 leaves
                    tg.map_stree(g, r)
                    taxids = set()
                    for lf in r.leaves():
                        taxids.update(lf.taxid_rootpath)
                    taxg = tg.taxid_new_subgraph(g, taxids)
                    # taxg is a new graph containing only the taxids in stree

                    # these properties will store the vertices and edges that are traced
                    # by r
                    verts = taxg.new_vertex_property('bool')
                    edges = taxg.new_edge_property('bool')

                    # add stree's nodes and branches into taxonomy graph
                    tg.merge_stree(taxg, r, stree, verts, edges)
                    # verts and edges now filter the paths traced by r in taxg

                    # next, add taxonomy edges to taxg connecting 'incertae sedis'
                    # leaves in stree to their containing taxa
                    for lf in r.leaves():
                        if lf.taxid and lf.incertae_sedis:
                            taxv = taxg.taxid_vertex[lf.taxid]
                            ev = taxg.edge(taxv, lf.v, True)
                            if ev:
                                assert len(ev) == 1
                                e = ev[0]
                            else:
                                e = taxg.add_edge(taxv, lf.v)
                            taxg.edge_in_taxonomy[e] = 1

                    # make a view of taxg that keeps only the vertices and edges traced by
                    # the source tree
                    gv = tg.graph_view(taxg, vfilt=verts, efilt=edges)
                    gv.vertex_strees = taxg.vertex_strees
                    gv.edge_strees = taxg.edge_strees
                    # the following code sets up the visualization
                    ecolor = taxg.new_edge_property('string')
                    for e in taxg.edges():
                        est = taxg.edge_strees[e]
                        eit = taxg.edge_in_taxonomy[e]
                        if len(est) and not eit: ecolor[e] = 'blue'
                        elif len(est) and eit: ecolor[e] = 'green'
                        else: ecolor[e] = 'yellow'

                    ewidth = taxg.new_edge_property('int')
                    for e in taxg.edges():
                        est = taxg.edge_strees[e]
                        if len(est): ewidth[e] = 3
                        else: ewidth[e] = 1

                    vcolor = taxg.new_vertex_property('string')
                    for v in taxg.vertices():
                        if not taxg.vertex_in_taxonomy[v]: vcolor[v] = 'blue'
                        else: vcolor[v] = 'green'

                    vsize = taxg.new_vertex_property('int')
                    for v in taxg.vertices():
                        if taxg.vertex_in_taxonomy[v] or v.out_degree() == 0:
                            vsize[v] = 8
                        else:
                            vsize[v] = 2

                    pos, pin = tg.layout(taxg,
                                         gv,
                                         gv.root,
                                         sfdp=True,
                                         deg0=195.0,
                                         degspan=150.0,
                                         radius=400)

                    for v in gv.vertices():
                        pin[v] = 1

                    for e in taxg.edges():
                        src = e.source()
                        tgt = e.target()
                        if not verts[src]:
                            verts[src] = 1
                            pos[src] = [0.0, 0.0]
                            vcolor[src] = 'red'
                        if not verts[tgt]:
                            verts[tgt] = 1
                            pos[tgt] = [0.0, 0.0]
                            vcolor[tgt] = 'red'
                        if not edges[e]:
                            edges[e] = 1
                            ecolor[e] = 'red'
                            ewidth[e] = 1.0
                            gv.wt[e] = 1.0

                    pos = gt.sfdp_layout(gv,
                                         pos=pos,
                                         pin=pin,
                                         eweight=gv.wt,
                                         multilevel=False)
                    ### Use function in TreeGraph.py to parse Graph(gv) into JSON
                    print "Generating JSON..."
                    result = tg.graph_json(gv,
                                           pos=pos,
                                           ecolor=ecolor,
                                           ewidth=ewidth,
                                           vcolor=vcolor,
                                           vsize=vsize)
                    result = result[
                        1:]  #strip the original { from the json so we can insert the time stamp
                    date = time.strftime(
                        "%Y%m%d%I%M%S"
                    )  # grab the system date for the filename and convert it to a string
                    treeid = str(stree)  # convert stree int into a string
                    timestamp = "{\"timestamp\": \"%s\", " % date
                    final_result = timestamp + result  # add date to first line of json file for later parsing
                    path = str(os.path.dirname(os.path.realpath(__file__)))
                    path = path[:-8]
                    path = "%s//%s/" % (
                        path, taxonomy
                    )  # build the full path to write the file too
                    filename = "%stree_%s.JSON" % (
                        path, treeid)  # build the full file_name for writing
                    if not os.path.exists(
                            path):  ## if directory doesn't exist, create it.
                        os.makedirs(path)

                    f = open(filename, 'w')
                    f.write(final_result)
                    f.close
                    print "Done."
                    rowcount = rowcount + 1

                except:  # catch *all* exceptions
                    e = sys.exc_info()[0]
                    e = str(e)
                    treeid = str(stree)
                    print("Error: %s</p>" % e)
                    errorstring = "Error: " + e + " on Tree: " + treeid  # rough hack to store trees with errors and the general error
                    errors.append(
                        errorstring)  # store all of the error strings
                    rowcount = rowcount + 1
                    continue  ## continue converting the rest of the trees into JSON even if a specific tree has errors
            else:
                print "Tree has more than 5000 leaves. No graph will be generated."

    print "JSON Generation Complete."
    ## write the error strings to a log file for review later

    if errors:
        with open("error_log.txt", "w+") as error_log:
            pickle.dump(errors, error_log)