Пример #1
0
def build_model():

    #import here, such that our global variables are not overridden!
    import j6_2ch_128mm, j6_4ch

    meta_2ch = j6_2ch_128mm.build_model()
    meta_4ch = j6_4ch.build_model()

    l_age = nn.layers.InputLayer(data_sizes["sliced:meta:PatientAge"])
    l_sex = nn.layers.InputLayer(data_sizes["sliced:meta:PatientSex"])

    l_meta_2ch_systole = meta_2ch["meta_outputs"]["systole"]
    l_meta_2ch_diastole = meta_2ch["meta_outputs"]["diastole"]

    l_meta_4ch_systole = meta_4ch["meta_outputs"]["systole"]
    l_meta_4ch_diastole = meta_4ch["meta_outputs"]["diastole"]

    l_meta_systole = nn.layers.ConcatLayer([l_age, l_sex, l_meta_2ch_systole, l_meta_4ch_systole])
    l_meta_diastole = nn.layers.ConcatLayer([l_age, l_sex, l_meta_2ch_diastole, l_meta_4ch_diastole])

    ldsys1 = nn.layers.DenseLayer(l_meta_systole, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ldsys1drop = nn.layers.dropout(ldsys1, p=0.5)
    ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ldsys2drop = nn.layers.dropout(ldsys2, p=0.5)
    ldsys3 = nn.layers.DenseLayer(ldsys2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax)

    ldsys3drop = nn.layers.dropout(ldsys3, p=0.5)  # dropout at the output might encourage adjacent neurons to correllate
    ldsys3dropnorm = layers.NormalisationLayer(ldsys3drop)
    l_systole = layers.CumSumLayer(ldsys3dropnorm)


    lddia1 = nn.layers.DenseLayer(l_meta_diastole, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    lddia1drop = nn.layers.dropout(lddia1, p=0.5)
    lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    lddia2drop = nn.layers.dropout(lddia2, p=0.5)
    lddia3 = nn.layers.DenseLayer(lddia2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax)

    lddia3drop = nn.layers.dropout(lddia3, p=0.5)  # dropout at the output might encourage adjacent neurons to correllate
    lddia3dropnorm = layers.NormalisationLayer(lddia3drop)
    l_diastole = layers.CumSumLayer(lddia3dropnorm)

    submodels = [meta_2ch, meta_4ch]
    return {
        "inputs": dict({
            "sliced:meta:PatientAge": l_age,
            "sliced:meta:PatientSex": l_sex,
        }, **{ k: v for d in [model["inputs"] for model in submodels]
               for k, v in d.items() }
        ),
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": dict({
        }, **{ k: v for d in [model["regularizable"] for model in submodels if "regularizable" in model]
               for k, v in d.items() }
        ),
        "pretrained":{
            j6_2ch_128mm.__name__: meta_2ch["outputs"],
            j6_4ch.__name__: meta_4ch["outputs"],
        },
        "cutoff_gradients": [
        ] + [ v for d in [model["meta_outputs"] for model in submodels if "meta_outputs" in model]
               for v in d.values() ]
    }
Пример #2
0
def build_model():

    #import here, such that our global variables are not overridden!
    import j6_2ch_128mm, j6_4ch, je_ss_jonisc64small_360

    sax_input = nn.layers.InputLayer(data_sizes["sliced:data:sax"])
    sax_slices = nn.layers.ReshapeLayer(sax_input, (-1, [2], [3], [4]))

    meta_sax = je_ss_jonisc64small_360.build_model(input_layer = sax_slices)

    #reduce the number of parameters BEFORE reshaping! Keep 16 numbers per slice.
    meta_sax_systole_reduced = nn.layers.DenseLayer(meta_sax["meta_outputs"]["systole"], num_units=16, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)
    meta_sax_diastole_reduced = nn.layers.DenseLayer(meta_sax["meta_outputs"]["diastole"], num_units=16, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    l_sax_systole = nn.layers.ReshapeLayer(meta_sax_systole_reduced, (-1, nr_slices, [1]))
    l_sax_diastole = nn.layers.ReshapeLayer(meta_sax_diastole_reduced, (-1, nr_slices, [1]))

    l_sax_systole_flat = nn.layers.DenseLayer(l_sax_systole, num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)
    l_sax_diastole_flat = nn.layers.DenseLayer(l_sax_diastole, num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    meta_2ch = j6_2ch_128mm.build_model()
    meta_4ch = j6_4ch.build_model()

    l_age = nn.layers.InputLayer(data_sizes["sliced:meta:PatientAge"])
    l_sex = nn.layers.InputLayer(data_sizes["sliced:meta:PatientSex"])
    l_locations = nn.layers.InputLayer(data_sizes["sliced:data:sax:locations"])

    l_meta_2ch_systole = nn.layers.DenseLayer(meta_2ch["meta_outputs"]["systole"], num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)
    l_meta_2ch_diastole = nn.layers.DenseLayer(meta_2ch["meta_outputs"]["diastole"], num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    l_meta_4ch_systole = nn.layers.DenseLayer(meta_4ch["meta_outputs"]["systole"], num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)
    l_meta_4ch_diastole = nn.layers.DenseLayer(meta_4ch["meta_outputs"]["diastole"], num_units=64, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    l_meta_systole = nn.layers.ConcatLayer([l_age, l_sex, l_meta_2ch_systole, l_meta_4ch_systole, l_locations, l_sax_systole_flat])
    l_meta_diastole = nn.layers.ConcatLayer([l_age, l_sex, l_meta_2ch_diastole, l_meta_4ch_diastole, l_locations, l_sax_diastole_flat])

    ldsys1 = nn.layers.DenseLayer(l_meta_systole, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ldsys1drop = nn.layers.dropout(ldsys1, p=0.5)
    ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ldsys2drop = nn.layers.dropout(ldsys2, p=0.5)
    ldsys3 = nn.layers.DenseLayer(ldsys2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax)

    ldsys3drop = nn.layers.dropout(ldsys3, p=0.5)  # dropout at the output might encourage adjacent neurons to correllate
    ldsys3dropnorm = layers.NormalisationLayer(ldsys3drop)
    l_systole = layers.CumSumLayer(ldsys3dropnorm)


    lddia1 = nn.layers.DenseLayer(l_meta_diastole, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    lddia1drop = nn.layers.dropout(lddia1, p=0.5)
    lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    lddia2drop = nn.layers.dropout(lddia2, p=0.5)
    lddia3 = nn.layers.DenseLayer(lddia2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax)

    lddia3drop = nn.layers.dropout(lddia3, p=0.5)  # dropout at the output might encourage adjacent neurons to correllate
    lddia3dropnorm = layers.NormalisationLayer(lddia3drop)
    l_diastole = layers.CumSumLayer(lddia3dropnorm)

    submodels = [meta_2ch, meta_4ch, meta_sax]
    return {
        "inputs": dict({
            "sliced:data:sax": sax_input,
            "sliced:meta:PatientAge": l_age,
            "sliced:meta:PatientSex": l_sex,
            "sliced:data:sax:locations": l_locations,
        }, **{ k: v for d in [model["inputs"] for model in [meta_2ch, meta_4ch]]
               for k, v in d.items() }
        ),
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": dict({
        }, **{ k: v for d in [model["regularizable"] for model in submodels if "regularizable" in model]
               for k, v in d.items() }
        ),
        "pretrained":{
            j6_2ch_128mm.__name__: meta_2ch["outputs"],
            j6_4ch.__name__: meta_4ch["outputs"],
            je_ss_jonisc64small_360.__name__: meta_sax["outputs"],
        },
        "cutoff_gradients": [
        ] + [ v for d in [model["meta_outputs"] for model in submodels if "meta_outputs" in model]
               for v in d.values() ]
    }