Пример #1
0
def main():
    logger.critical('Loading the word embedding.')
    vocab, word_embeddings = load_word_embedding(args.vse)

    logger.critical('Building up the model.')
    model = CompletionModel(word_embeddings)
    if args.use_gpu:
        model.cuda()
    # Disable the cudnn benchmark.
    model.eval()
    cudnn.benchmark = False

    logger.critical('Loading the dataset.')

    dev_dataset = CompletionDataset(vocab, pjoin(args.data_dir, args.dev_img), pjoin(args.data_dir, args.dev_cap), mode=args.mode)
    test_dataset = CompletionDataset(vocab, pjoin(args.data_dir, args.test_img), pjoin(args.data_dir, args.test_cap), mode=args.mode)

    logger.critical('Building up the data loader.')
    dev_dataloader = make_dataloader(dev_dataset, num_workers=args.data_workers, batch_size=64, shuffle=False, drop_last=False, pin_memory=True)
    test_dataloader = make_dataloader(test_dataset, num_workers=args.data_workers, batch_size=64, shuffle=False, drop_last=False, pin_memory=True)

    for epoch_id in range(1, 11):
        load_weights(model, pjoin(args.load, 'epoch_{}.pth'.format(epoch_id)))

        for loader in [dev_dataloader, test_dataloader]:
            meters = GroupMeters()

            end = time.time()
            with tqdm_pbar(total=len(loader), leave=False) as pbar:
                for i, data in enumerate(loader):
                    feed_dict = data
                    feed_dict = mark_volatile(feed_dict)

                    if args.use_gpu:
                        feed_dict = async_copy_to(feed_dict, 0)

                    data_time = time.time() - end; end = time.time()

                    output_dict = model(feed_dict)
                    output_dict = as_numpy(output_dict)

                    gpu_time = time.time() - end;  end = time.time()

                    meters.update({k: float(v) for k, v in output_dict.items() if k.startswith('top')}, n=len(feed_dict['image']))
                    meters.update({'time/data': data_time, 'time/gpu': gpu_time})

                    pbar.set_description(format_meters('sentid={}'.format(i), meters.val, '{}={:.4f}', ', '))
                    pbar.update()

                    end = time.time()

            print(epoch_id, sorted(meters.avg.items()))
Пример #2
0
def main():
    args.dump_dir = ensure_path(
        osp.join('dumps', args.dataset_name, args.desc_name, args.expr))
    args.ckpt_dir = ensure_path(osp.join(args.dump_dir, 'checkpoints'))
    args.meta_dir = ensure_path(osp.join(args.dump_dir, 'meta'))
    args.vis_dir = osp.join(args.dump_dir, 'vis', args.run_name)

    initialize_dataset(args.dataset)
    build_dataset = get_dataset_builder(args.dataset)

    dataset = build_dataset(args, configs, args.data_image_root,
                            args.data_scenes_json, args.data_questions_json)

    dataset_split = int(len(dataset) *
                        args.data_split) if args.data_split <= 1 else int(
                            args.data_split)
    train_dataset, validation_dataset = dataset.split_trainval(dataset_split)

    logger.critical('Building the model.')
    model = desc.make_model(args, train_dataset.unwrapped.vocab)

    if args.use_gpu:
        model.cuda()
        # Use the customized data parallel if applicable.
        if args.gpu_parallel:
            from jactorch.parallel import JacDataParallel
            # from jactorch.parallel import UserScatteredJacDataParallel as JacDataParallel
            model = JacDataParallel(model, device_ids=args.gpus).cuda()
        # Disable the cudnn benchmark.
        cudnn.benchmark = False

    if args.load:
        from jactorch.io import load_weights
        if load_weights(model, args.load):
            logger.critical(
                'Loaded weights from pretrained model: "{}".'.format(
                    args.load))

    from jacinle.utils.meter import GroupMeters
    meters = GroupMeters()

    if args.embed:
        from IPython import embed
        embed()

    logger.critical('Building the data loader.')
    validation_dataloader = validation_dataset.make_dataloader(
        args.batch_size,
        shuffle=True,
        drop_last=False,
        nr_workers=args.data_workers)

    model.eval()
    validate_epoch(0, model, validation_dataloader, meters)
    logger.critical(
        meters.format_simple('Validation',
                             {k: v
                              for k, v in meters.avg.items() if v != 0},
                             compressed=False))
    return meters
Пример #3
0
 def load_weights(self, filename, **kwargs):
     return load_weights(self._model, filename, **kwargs)
Пример #4
0
def main():
    # directories
    if not args.debug:
        args.dump_dir = ensure_path(
            osp.join('dumps', args.series_name, args.desc_name))
        args.ckpt_dir = ensure_path(osp.join(args.dump_dir, 'checkpoints'))
        args.meta_dir = ensure_path(osp.join(args.dump_dir, 'meta'))
        args.meta_file = osp.join(args.meta_dir, args.run_name + '.json')
        args.log_file = osp.join(args.meta_dir, args.run_name + '.log')
        args.meter_file = osp.join(args.meta_dir,
                                   args.run_name + '.meter.json')

    if not args.debug:
        logger.critical('Writing logs to file: "{}".'.format(args.log_file))
        set_output_file(args.log_file)

        logger.critical('Writing metainfo to file: "{}".'.format(
            args.meta_file))
        with open(args.meta_file, 'w') as f:
            f.write(dump_metainfo(args=args.__dict__, configs=configs))
    else:
        if args.use_tb:
            logger.warning(
                'Disabling the tensorboard in the debug mode.'.format(
                    args.meta_file))
            args.use_tb = False

    # TODO(Jiayuan Mao @ 04/23): load the dataset.
    logger.critical('Loading the dataset.')
    validation_dataset = None
    # configs.validate_dataset_compatibility(train_dataset)

    # TODO(Jiayuan Mao @ 04/23): build the model.
    logger.critical('Building the model.')
    model = desc.make_model(args)

    if args.use_gpu:
        model.cuda()
        # Use the customized data parallel if applicable.
        if args.gpu_parallel:
            from jactorch.parallel import JacDataParallel
            # from jactorch.parallel import UserScatteredJacDataParallel as JacDataParallel
            model = JacDataParallel(model, device_ids=args.gpus).cuda()
        # TODO(Jiayuan Mao @ 04/23): disable the cudnn benchmark.
        # Disable the cudnn benchmark.
        cudnn.benchmark = False

    if load_weights(model, args.load):
        logger.critical('Loaded weights from pretrained model: "{}".'.format(
            args.load))

    if args.use_tb:
        from jactorch.train.tb import TBLogger, TBGroupMeters
        tb_logger = TBLogger(args.tb_dir)
        meters = TBGroupMeters(tb_logger)
        logger.critical('Writing tensorboard logs to: "{}".'.format(
            args.tb_dir))
    else:
        from jacinle.utils.meter import GroupMeters
        meters = GroupMeters()

    if not args.debug:
        logger.critical('Writing meter logs to file: "{}".'.format(
            args.meter_file))

    if args.embed:
        from IPython import embed
        embed()

    # TODO(Jiayuan Mao @ 04/23): make the data loader.
    logger.critical('Building the data loader.')
    validation_dataloader = validation_dataset.make_dataloader(
        args.batch_size,
        shuffle=False,
        drop_last=False,
        nr_workers=args.data_workers)

    model.eval()
    validate_epoch(model, validation_dataloader, meters)

    if not args.debug:
        meters.dump(args.meter_file)

    logger.critical(meters.format_simple('Test', compressed=False))
Пример #5
0
 def load_weights(self, filename):
     return load_weights(self._model, filename)