def gen_bbox_transform(img_size): transform = T.Compose([ T.NormalizeBbox(), T.Resize(img_size), T.DenormalizeBbox(), ]) def fun(img, bbox): _, bbox = transform(img, bbox) return torch.from_numpy(bbox) return fun
def build_concept_quantization_clevr_dataset(args, configs, image_root, scenes_json): import jactorch.transforms.bbox as T image_transform = T.Compose([ T.NormalizeBbox(), T.Resize(configs.data.image_size), T.DenormalizeBbox(), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) from nscl.datasets.datasets import ConceptQuantizationDataset dataset = ConceptQuantizationDataset(scenes_json, image_root=image_root, image_transform=image_transform) return dataset
def build_clevr_dataset(args, configs, image_root, scenes_json, questions_json): import jactorch.transforms.bbox as T image_transform = T.Compose([ T.NormalizeBbox(), T.Resize(configs.data.image_size), T.DenormalizeBbox(), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) from nscl.datasets.datasets import NSCLDataset dataset = NSCLDataset( scenes_json, questions_json, image_root=image_root, image_transform=image_transform, vocab_json=args.data_vocab_json ) return dataset
def build_concept_retrieval_clevrer_dataset(args, configs, program, image_root, scenes_json): import jactorch.transforms.bbox as T image_transform = T.Compose([ T.NormalizeBbox(), T.Resize(configs.data.image_size), T.DenormalizeBbox(), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) from nscl.datasets.datasets import ConceptRetrievalDataset dataset = ConceptRetrievalDataset(program, scenes_json, image_root=image_root, image_transform=image_transform) return dataset