Пример #1
0
 def param_run(params):
     jet1 = FormJets.Spectral((ints, floats), dict_jet_params=params)
     jet1.setup_internal()
     idx1, idx2 = jet1.chose_pair()
     jet1.step(idx1, idx2)
     # make a jet out of the ints and floats
     ints2 = jet1._ints[jet1.Label != -1]
     floats2 = jet1._floats[jet1.Label != -1]
     jet2 = FormJets.Spectral((ints2, floats2), dict_jet_params=params)
     jet1.run()
     jet2.run()
     num_parts = np.sum(jet1.Label != -1)
     tst.assert_allclose(jet1._ints[:num_parts], jet2._ints[:num_parts])
     tst.assert_allclose(jet1._floats[:num_parts], jet2._floats[:num_parts])
Пример #2
0
def test_Spectral_stopping_condition():
    """ Will be called before taking another step.

    Parameters
    ----------
    idx1 : int
        index of first of the pair of particles to next join.
    idx2 : int
        index of second of the pair of particles to next join.

    Returns
    -------
    : bool
        True if the clustering should stop now, else False.
    """
    ints = -np.ones((3, len(FormJets.Agglomerative.int_columns)))
    ints[:, 0] = np.arange(3)
    floats = np.zeros((3, len(FormJets.Agglomerative.float_columns)))
    params = {"MaxMeanDist": 10}
    spect = FormJets.Spectral((ints, floats),
                              memory_cap=10,
                              dict_jet_params=params)
    distances2 = np.array([[np.inf, 1., 4.], [1., np.inf, 16.],
                           [4., 16., np.inf]])
    spect._raw_distances2 = distances2
    outcome = spect.stopping_condition(1, 1)
    assert not outcome
    distances2 = np.array([[np.inf, 110., 100.], [110., np.inf, 100.],
                           [100., 100., np.inf]])
    spect._raw_distances2 = distances2
    outcome = spect.stopping_condition(1, 0)
    assert outcome
Пример #3
0
def test_Spectral_size():
    ints = np.array([[0, -1, -1, -1, -1], [2, -1, -1, -1, -1]])
    floats = np.zeros((2, len(FormJets.Agglomerative.float_columns)))
    params = {"ExpofPTFormatEmbedding": "genkt", "ExpofPTEmbedding": 2}
    spect = FormJets.Spectral((ints, floats),
                              memory_cap=10,
                              dict_jet_params=params)
    spect.setup_internal()
    expected_inital_size = spect._affinity[spect._2d_avaliable_indices][0, 1]
    tst.assert_allclose(spect.Available_Size, expected_inital_size)
    new_ints, new_floats = spect.combine_ints_floats(0, 1, 0.)
    tst.assert_allclose(new_floats[spect._col_num["Size"]],
                        expected_inital_size * 2)
Пример #4
0
def test_Spectral_embedding_distance2():
    ints = np.array([[0, 1, -1, -1, 0], [2, 1, -1, -1, 0], [1, -1, 2, 0, 1]])
    floats = np.zeros((3, len(FormJets.Agglomerative.float_columns)))
    params = {"ExpofPTFormatEmbedding": "genkt", "ExpofPTEmbedding": 2}
    spect = FormJets.Spectral((ints, floats),
                              memory_cap=10,
                              dict_jet_params=params)
    spect.setup_internal()
    space = np.zeros((3, 2))
    pt = np.arange(3) + 1
    raw_distances, distances = spect._embedding_distance2(space, pt=pt)
    expected = np.zeros((3, 3))
    np.fill_diagonal(expected, np.inf)
    tst.assert_allclose(raw_distances, expected)
    tst.assert_allclose(distances, expected + 1)
    # more complex space
    space = np.arange(3).reshape((3, 1))
    raw_distances, distances = spect._embedding_distance2(space, pt=pt)
    expected = np.array([[np.inf, 1., 4.], [1., np.inf, 16.],
                         [4., 16., np.inf]])
    tst.assert_allclose(expected, raw_distances)
    tst.assert_allclose(expected + 1, distances)
    # try without the kt factor, but with a SingularitySuppression
    params = {"ExpofPTFormatEmbedding": None, "SingularitySuppression": 1}
    spect = FormJets.Spectral((ints, floats),
                              memory_cap=10,
                              dict_jet_params=params)
    spect.setup_internal()
    space = np.arange(3).reshape((3, 1))
    pt = np.arange(3) + 0
    singularity = np.array([[1, 0., 0.], [0., 1, 0.5], [0., 0.5, 1]])
    raw_distances, distances = spect._embedding_distance2(
        space, singularity, pt)
    raw_expected = np.array([[np.inf, 1., 4.], [1., np.inf, 1.],
                             [4., 1., np.inf]])
    expected = np.array([[np.inf, 0., 0.], [0., np.inf, 1.], [0., 1., np.inf]])
    tst.assert_allclose(raw_expected, raw_distances)
    tst.assert_allclose(expected, distances)
Пример #5
0
def get_normed_points(eventWise, jet_params, first_event, last_event):
    eventWise.selected_event = None
    allocated_tags, tag_masses = MassPeaks.descendants_masses(eventWise, [25])
    allocated_tags, tag_masses = allocated_tags[25], tag_masses[25]
    events = []
    for event_n in range(first_event, last_event):
        eventWise.selected_event = event_n
        tag_idxs = list(eventWise.TagIndex)
        tag_pairs = [[tag_idxs.index(i) for i in pair]
                     for pair in allocated_tags[event_n]]
        tag_rapidity = eventWise.Rapidity[tag_idxs]
        tag_phi = eventWise.Phi[tag_idxs]
        jets = FormJets.Spectral(eventWise, dict_jet_params=jet_params)
        jets.setup_internal()
        distances, masses = get_jet_masses(jets, tag_rapidity, tag_phi,
                                           tag_pairs)
        masses -= list(tag_masses[event_n])
        events.append((distances, masses))
    return events
def create_eigenvectors(eventWise, jet_params):
    """
    Create and return the initial embedding and eigenvectors.
    The jet params relevent to this are;
    PhyDistance, AffinityType, CutoffDistance, CutoffKNN, Laplacien, ExpOfPTMultiplier
    SpectralMean will be used.

    Parameters
    ----------
    eventWise : EventWise
        Data set containing particle data.
        
    jet_params : dict
        Input parameter choices

    Returns
    -------
    eigenvalues : list of numpy arrays of floats
        Non trivial eigenvalues for inital embedding

    eigenvectors : list of numpy arrays of floats
        Non trivial eigenvectors for inital embedding

    """
    eventWise.selected_event = None
    eigenvectors = []
    eigenvalues = []
    for event_n in range(len(eventWise.X)):
        eventWise.selected_event = event_n
        jets = FormJets.Spectral(eventWise,
                                 run=False,
                                 dict_jet_params=jet_params)
        jets.debug_run()
        eigenvalues.append(
            np.array(jets.debug_data['eigenvalues'][0]).flatten())
        eigenvectors.append(np.copy(jets.debug_data['embedding'][0]))
        del jets
    return eigenvalues, eigenvectors