Пример #1
0
 def test_init_start_stop(self):
     """Test camera's thread init/start/stop methods."""
     camera = Camera()
     camera.start()
     time.sleep(1)
     image = bgr8_to_jpeg(camera.value)
     camera.stop()
     # Check if image changed after stopping
     assert image == bgr8_to_jpeg(camera.value)
     
         
Пример #2
0
def execute(change):
    image = change['new']

    # execute collision model to determine if blocked
    collision_output = collision_model(preprocess(image)).detach().cpu()
    prob_blocked = float(F.softmax(collision_output.flatten(), dim=0)[0])
    blocked_widget.value = prob_blocked

    # turn left if blocked
    if prob_blocked > 0.5:
        robot.left(0.3)
        image_widget.value = bgr8_to_jpeg(image)
        return

    # compute all detected objects
    detections = model(image)

    # draw all detections on image
    for det in detections[0]:
        bbox = det['bbox']
        cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])),
                      (int(width * bbox[2]), int(height * bbox[3])),
                      (255, 0, 0), 2)

    # select detections that match selected class label
    matching_detections = [
        d for d in detections[0] if d['label'] == int(label_widget.value)
    ]

    # get detection closest to center of field of view and draw it
    det = closest_detection(matching_detections)
    if det is not None:
        bbox = det['bbox']
        cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])),
                      (int(width * bbox[2]), int(height * bbox[3])),
                      (0, 255, 0), 5)

    # otherwise go forward if no target detected
    if det is None:
        robot.forward(float(speed_widget.value))

    # otherwsie steer towards target
    else:
        # move robot forward and steer proportional target's x-distance from center
        center = detection_center(det)
        robot.set_motors(
            float(speed_widget.value + turn_gain_widget.value * center[0]),
            float(speed_widget.value - turn_gain_widget.value * center[0]))

    # update image widget
    image_widget.value = bgr8_to_jpeg(image)
Пример #3
0
def display_xy(camera_image):
    image = np.copy(camera_image)
    x = x_slider.value
    y = y_slider.value
    x = int(x * 224 / 2 + 112)
    y = int(y * 224 / 2 + 112)
    image = cv2.circle(image, (x, y), 8, (0, 255, 0), 3)
    image = cv2.circle(image, (112, 224), 8, (0, 0,255), 3)
    image = cv2.line(image, (x,y), (112,224), (255,0,0), 3)
    jpeg_image = bgr8_to_jpeg(image)
    return jpeg_image
Пример #4
0
    layout=widgets.Layout(align_self='center'))

# In[33]:

display(image_box)

# In[105]:

count = 0
seta = 0
while True:
    img = camera.value
    try:
        img_result, img_op, seta = search_road(img, seta)
        print(seta, end='\t')
        result1.value = bgr8_to_jpeg(img_result)
        result2.value = bgr8_to_jpeg(img_op)
        pw = 1.2
        w = (seta / 90)
        left_power = pw * (0.1 + w * 0.1)
        right_power = pw * (0.1 - w * 0.1)
        robot.set_motors(left_power, right_power)
#         time.sleep(0.5)
#         robot.stop()
    except:
        print('not Found', end='\r')
        robot.stop()
    input_image.value = bgr8_to_jpeg(img)
    if count == 120:
        break
    else:
Пример #5
0
def execute(change):
    global ping_counter

    ping_counter += 1
    if ping_counter > 60:
        logger.info("still observing")
        ping_counter = 0

    image = change['new']
    resized_image = image
    if model_width != camera_width and model_height != camera_height:
        resized_image = cv2.resize(image, (model_width, model_height),
                                   interpolation=cv2.INTER_AREA)

    # execute collision model to determine if blocked
    #collision_output = collision_model(preprocess(image,model_224,224)).detach().cpu()
    #prob_blocked = float(F.softmax(collision_output.flatten(), dim=0)[0])
    # turn left if blocked
    #if prob_blocked > 0.5:
    #    robot.left(0.4)
    #    return

    # compute all detected objects
    detections = model(resized_image)

    # draw all detections on image
    # for det in detections[0]:
    #     bbox = det['bbox']
    #     cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])), (int(width * bbox[2]), int(height * bbox[3])), (255, 0, 0), 2)

    # select detections that match selected class label
    matching_detections = [
        d for d in detections[0]
        if d['label'] in v2_coco_labels_to_capture and d['confidence'] > 0.50
    ]

    tf_image_list = []
    if len(matching_detections) > 0:
        logger.info(matching_detections)

        filename = str(uuid1())
        for d in matching_detections:
            bbox = d['bbox']
            xmin = int(xscale * bbox[0])
            ymin = int(yscale * bbox[1])
            xmax = int(xscale * bbox[2])
            ymax = int(yscale * bbox[3])
            if xmin < 0:
                xmin = 0
            if ymin < 0:
                ymin = 0
            if xmax > camera_width:
                xmax = camera_width - 1
            if ymax > camera_height:
                ymax = camera_height - 1

            tf_image_desc = [
                filename + '.jpg', camera_width, camera_height,
                int(d['label']), xmin, ymin, xmax, ymax
            ]
            tf_image_list.append(tf_image_desc)

        save_image(bgr8_to_jpeg(image), filename, tf_image_list)

    # get detection closest to center of field of view and center bot
    det = closest_detection(matching_detections)
    if det is not None:
        center = detection_center(det)
        logger.debug("center: %s", center)

        move_speed = 2.0 * center[0]
        if abs(move_speed) > 0.3:
            if move_speed > 0.0:
                robot.right(move_speed)
            else:
                robot.left(abs(move_speed))

    else:
        robot.stop()
        if logger.isEnabledFor(logging.DEBUG) and (len(detections[0])) > 0:
            logger.debug(detections[0])
Пример #6
0
import os
import time
from jetbot import Camera, bgr8_to_jpeg

interval_seconds = 5
directory = 'images'
camera = Camera()

# count = 0

# while True:
file_name = os.path.join(directory, 'image_1.jpeg')
with open(file_name, 'wb') as f:
    f.write(bgr8_to_jpeg(camera.value))
    # count +=  1
    # time.sleep(interval_seconds)
Пример #7
0
def button_proc(change):
    camera_image.value = bgr8_to_jpeg(camera.value)