Пример #1
0
    def test_freeflyer_multiple_constraints(self):
        """
        @brief    Test having several constraints at once.
        @details  This test features:
                      - a freeflyer with a fixed body constraint on the
                        freeflyer. This gives a non-trivial constraint to solve
                        to effectively cancel the freeflyer.
                      - a fixed body constaint on the output mass.
        """
        # Rebuild the model with a freeflyer
        robot = load_urdf_default(
            self.urdf_name, self.motors_names, has_freeflyer=True)

        # Create and initialize the engine
        engine = jiminy.Engine()
        setup_controller_and_engine(
            engine, robot, internal_dynamics=self._spring_force)

        # Configure the engine
        engine_options = engine.get_options()
        engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity
        engine_options["stepper"]["solver"] = "runge_kutta_dopri5"
        engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1
        engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1
        engine.set_options(engine_options)

        # Add a kinematic constraints.
        freeflyer_constraint = jiminy.FixedFrameConstraint("world")
        robot.add_constraint("world", freeflyer_constraint)
        fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass")
        robot.add_constraint("fixMass", fix_mass_constraint)

        # Initialize with a random freeflyer configuration and zero velocity
        x_init = np.zeros(17)
        x_init[:7] = np.random.rand(7)
        x_init[3:7] /= np.linalg.norm(x_init[3:7])
        x_init[7:9], x_init[-2:] = np.split(self.x0, 2)

        # The acceleration of the second mass should be the opposite of that of
        # the first
        self.A[3, :] = -self.A[2, :]

        # Compare the numerical and analytical solutions
        _, x_jiminy, x_analytical = \
            self._get_simulated_and_analytical_solutions(
                engine, self.tf, x_init)
        self.assertTrue(np.allclose(
            x_jiminy[:, [7, 8, 15, 16]], x_analytical, atol=TOLERANCE))

        # Verify in addition that freeflyer has not moved
        self.assertTrue(np.allclose(x_jiminy[:, 9:15], 0, atol=TOLERANCE))
        self.assertTrue(np.allclose(
            x_jiminy[:, :7], x_jiminy[0, :7], atol=TOLERANCE))
Пример #2
0
    def test_fixed_body_constraint(self):
        """
        @brief  Test kinematic constraint: fixed second mass with a constaint.
        """
        # Create and initialize the engine
        engine = jiminy.Engine()
        setup_controller_and_engine(
            engine, self.robot, internal_dynamics=self._spring_force)

        # Configure the engine
        engine_options = engine.get_options()
        engine_options["stepper"]["solver"] = "runge_kutta_dopri5"
        engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1
        engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1
        engine.set_options(engine_options)

        # Add a kinematic constraint on the second mass
        constraint = jiminy.FixedFrameConstraint("SecondMass")
        self.robot.add_constraint("fixMass", constraint)

        # The dynamics of the first mass is not changed, the acceleration of
        # the second mass is the opposite of that of the first mass to provide
        # a constant output position.
        self.A[3, :] = -self.A[2, :]

        # Compare the numerical and analytical solutions
        _, x_jiminy, x_analytical = \
            self._get_simulated_and_analytical_solutions(
                engine, self.tf, self.x0)
        self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
Пример #3
0
    def test_fixed_body_constraint_rotor_inertia(self):
        """
        @brief Test fixed body constraint together with rotor inertia.
        """
        # Create robot with freeflyer, set rotor inertia.
        self.robot = load_urdf_default(self.urdf_path, ["PendulumJoint"])
        J = 0.1
        motor_options = self.robot.get_motors_options()
        motor_options["PendulumJoint"]['enableRotorInertia'] = True
        motor_options["PendulumJoint"]['rotorInertia'] = J
        self.robot.set_motors_options(motor_options)

        # No controller
        def computeCommand(t, q, v, sensor_data, u):
            u[:] = 0.0

        # Dynamics: simulate a spring of stifness k
        k_spring = 500

        def internalDynamics(t, q, v, sensor_data, u):
            u[:] = -k_spring * q[:]

        controller = jiminy.ControllerFunctor(computeCommand, internalDynamics)
        controller.initialize(self.robot)

        # Set fixed body constraint.
        freeflyer_constraint = jiminy.FixedFrameConstraint("world")
        self.robot.add_constraint("world", freeflyer_constraint)

        engine = jiminy.Engine()
        engine.initialize(self.robot, controller)
        engine_options = engine.get_options()
        engine_options["world"]["gravity"] = np.zeros(6)  # Turn off gravity
        engine.set_options(engine_options)

        x0 = np.array([0.1, 0.0])
        tf = 2.0
        # Run simulation
        engine.simulate(tf, x0)
        log_data, _ = engine.get_log()
        time = log_data['Global.Time']
        x_jiminy = np.stack([log_data['HighLevelController.' + s]
                             for s in self.robot.logfile_position_headers + \
                                      self.robot.logfile_velocity_headers], axis=-1)

        # Analytical solution: dynamics should be unmodifed by
        # the constraint, so we have a simple mass on a spring.
        pnc_model = self.robot.pinocchio_model_th
        I = pnc_model.inertias[1].mass * pnc_model.inertias[1].lever[2]**2

        # Write system dynamics
        I_eq = I + J
        A = np.array([[0, 1], [-k_spring / I_eq, 0]])
        x_analytical = np.stack([expm(A * t).dot(x0) for t in time], axis=0)

        self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
Пример #4
0
    def test_fixed_body_constraint(self):
        """
        @brief Test kinematic constraint: fixed second mass with a constaint.
        """

        # Set same spings as usual
        def compute_command(t, q, v, sensors_data, u):
            u[:] = 0.0

        def internal_dynamics(t, q, v, sensors_data, u):
            u[:] = -self.k * q - self.nu * v

        controller = jiminy.ControllerFunctor(compute_command,
                                              internal_dynamics)
        controller.initialize(self.robot)
        engine = jiminy.Engine()
        engine.initialize(self.robot, controller)

        # Add a kinematic constraint on the second mass
        constraint = jiminy.FixedFrameConstraint("SecondMass")
        self.robot.add_constraint("fixMass", constraint)

        # Run simulation
        engine.simulate(self.tf, self.x0)

        log_data, _ = engine.get_log()
        time = log_data['Global.Time']
        x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])]
                             for s in self.robot.logfile_position_headers + \
                                      self.robot.logfile_velocity_headers], axis=-1)

        # Compute analytical solution
        # The dynamics of the first mass is not changed, the acceleration of the second
        # mass is the opposite of that of the first mass to provide a constant
        # output position.
        self.A[3, :] = -self.A[2, :]
        x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time],
                                axis=0)

        # Compare the numerical and analytical solutions
        self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
Пример #5
0
    def test_constraint_external_force(self):
        """
        @brief Test support of external force applied with constraints.
        @details To provide a non-trivial test case with an external force non-colinear
                 to the constraints, simulate two masses oscillating, one along
                 the x axis and the other along the y axis, with a spring between
                 them (in diagonal). The system may be represented as such ((f) indicates fixed bodies)

                 [M_22 (f)]
                     ^
                     ^
                   [M_21]\<>\
                     ^     \<>\
                     ^       \<>\
                     ^         \<>\
                   [O (f)] <><> [M_11] <><> [M_12 (f)]

        """
        # Build two robots with freeflyers, with a freeflyer and a fixed second body constraint.
        # Rebuild the model with a freeflyer.
        robots = []
        engine = jiminy.EngineMultiRobot()

        system_names = ['FirstSystem', 'SecondSystem']
        k = np.array([[100, 50], [80, 120]])
        nu = np.array([[0.2, 0.01], [0.05, 0.1]])
        k_cross = 100

        class Controllers():
            def __init__(self, k, nu):
                self.k = k
                self.nu = nu

            def compute_command(self, t, q, v, sensors_data, u):
                u[:] = 0

            def internal_dynamics(self, t, q, v, sensors_data, u):
                u[6:] = - self.k * q[7:] - self.nu * v[6:]

        for i in range(2):
            # Load robot.
            robots.append(load_urdf_default(self.urdf_path, self.motor_names, True))

            # Apply constraints.
            freeflyer_constraint = jiminy.FixedFrameConstraint("world")
            robots[i].add_constraint("world", freeflyer_constraint)
            fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass")
            robots[i].add_constraint("fixMass", fix_mass_constraint)

            # Create controller
            controller = Controllers(k[i, :], nu[i, :])
            controller = jiminy.ControllerFunctor(controller.compute_command, controller.internal_dynamics)
            controller.initialize(robots[i])

            # Add system to engine.
            engine.add_system(system_names[i], robots[i], controller)

        # Add coupling force.
        def coupling_force(t, q1, v1, q2, v2, f):
            # Putting a linear spring between both systems would actually
            # decouple them (the force applied on each system would be a function
            # of this system state only). So we use a nonlinear stiffness, proportional
            # to the square of the distance of both systems to the origin.
            dsquared = q1[7] ** 2 + q2[7] ** 2
            f[0] = - k_cross * (1 + dsquared) * q1[7]
            f[1] = k_cross * (1 + dsquared) * q2[7]

        engine.add_coupling_force(system_names[0], system_names[1], "FirstMass", "FirstMass", coupling_force)

        # Initialize the whole system.
        # First sytem: freeflyer at identity.
        x_init = {'FirstSystem': np.zeros(17)}
        x_init['FirstSystem'][7:9] = self.x0[:2]
        x_init['FirstSystem'][7:9] = self.x0[:2]
        x_init['FirstSystem'][-2:] = self.x0[2:]
        x_init['FirstSystem'][6] = 1.0
        # Second system: rotation by pi / 2 around Z to bring X axis to Y axis.
        x_init['SecondSystem'] = np.copy(x_init['FirstSystem'])
        x_init['SecondSystem'][5:7] = np.sqrt(2) / 2.0

        # Run simulation
        engine.simulate(self.tf, x_init)

        # Extract log data
        log_data, _ = engine.get_log()
        time = log_data['Global.Time']
        x_jiminy = [np.stack([log_data['.'.join(['HighLevelController', system_names[i], s])]
                                for s in robots[i].logfile_position_headers + \
                                         robots[i].logfile_velocity_headers] , axis=-1)
                                            for i in range(len(system_names))]

        # Verify that both freeflyers didn't moved.
        for i in range(len(system_names)):
            self.assertTrue(np.allclose(x_jiminy[i][:, 9:15], 0.0, atol=TOLERANCE))
            self.assertTrue(np.allclose(x_jiminy[i][:, :7], x_jiminy[i][0, :7], atol=TOLERANCE))

        # Extract coordinates in a minimum state vector.
        x_jiminy_extract = np.hstack([x_jiminy[i][:, [7,8,15,16]]
                                        for i in range(len(system_names))])

        # Define dynamics of this system
        def system_dynamics(t, x):
            dx = np.zeros(8)
            # Velocity to position.
            dx[:2] = x[2:4]
            dx[4:6] = x[6:8]
            # Compute acceleration linked to the spring.
            for i in range(2):
                dx[2 + 4 * i] = -k[i, 0] * x[4 * i] - nu[i, 0] * x[2 + 4 * i] \
                                + k[i, 1] * x[1 + 4 * i] + nu[i, 1] * x[3 + 4 * i]

            # Coupling force between both system.
            dsquared = x[0] ** 2 + x[4] ** 2
            dx[2] += - k_cross * (1 + dsquared) * x[0]
            dx[6] += - k_cross * (1 + dsquared) * x[4]

            for i in range(2):
                # Devide forces by mass.
                m = robots[i].pinocchio_model_th.inertias[1].mass
                dx[2 + 4 * i] /= m
                # Second mass accelration should be opposite of the first.
                dx[3 + 4 * i] = -dx[2 + 4 * i]
            return dx

        x0 = np.hstack([x_init[key][[7, 8, 15, 16]] for key in x_init])
        x_python = integrate_dynamics(time, x0, system_dynamics)
        self.assertTrue(np.allclose(x_jiminy_extract, x_python, atol=TOLERANCE))
Пример #6
0
    def test_freeflyer_multiple_constraints(self):
        """
        @brief Test having several constraints at once.
        @details This test features:
                     - a freeflyer with a fixed body constraint on the freeflyer
                    (this gives a non-trivial constraint to solve to effectively cancel the freeflyer)
                     - a fixed body constaint on the output mass.
        """
        # Rebuild the model with a freeflyer.
        self.robot = load_urdf_default(self.urdf_path, self.motor_names, has_freeflyer = True)

        # Set same spings as usual
        def compute_command(t, q, v, sensors_data, u):
            u[:] = 0.0

        def internal_dynamics(t, q, v, sensors_data, u):
            u[6:] = - self.k * q[7:] - self.nu * v[6:]

        controller = jiminy.ControllerFunctor(compute_command, internal_dynamics)
        controller.initialize(self.robot)
        engine = jiminy.Engine()
        engine.initialize(self.robot, controller)
        # Disable gravity.
        engine_options = engine.get_options()
        engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity
        engine.set_options(engine_options)

        # Add a kinematic constraints.
        freeflyer_constraint = jiminy.FixedFrameConstraint("world")
        self.robot.add_constraint("world", freeflyer_constraint)
        fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass")
        self.robot.add_constraint("fixMass", fix_mass_constraint)

        # Initialize with zero freeflyer velocity...
        x_init = np.zeros(17)
        x_init[7:9] = self.x0[:2]
        x_init[-2:] = self.x0[2:]
        # ... and a "random" (but fixed) freeflyer quaternion
        np.random.seed(42)
        x_init[:7] = np.random.rand(7)
        x_init[3:7] /= np.linalg.norm(x_init[3:7])

        # Run simulation
        engine.simulate(self.tf, x_init)

        log_data, _ = engine.get_log()
        time = log_data['Global.Time']
        x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])]
                             for s in self.robot.logfile_position_headers + \
                                      self.robot.logfile_velocity_headers], axis=-1)

        # Verify that freeflyer hasn't moved.
        self.assertTrue(np.allclose(x_jiminy[:, 9:15], 0, atol=TOLERANCE))
        self.assertTrue(np.allclose(x_jiminy[:, :7], x_jiminy[0, :7], atol=TOLERANCE))

        # Compute analytical solution - the acceleration of the second mass should
        # be the opposite of that of the first.
        self.A[3, :] = -self.A[2, :]
        x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0)

        # Compare the numerical and analytical solutions
        self.assertTrue(np.allclose(x_jiminy[:, [7,8,15,16]], x_analytical, atol=TOLERANCE))
Пример #7
0
    def test_fixed_body_constraint_armature(self):
        """
        @brief Test fixed body constraint together with rotor inertia.
        """
        # Create robot with freeflyer, set rotor inertia.
        robot = load_urdf_default(self.urdf_name,
                                  self.motors_names,
                                  has_freeflyer=True)

        # Enable rotor inertia
        J = 0.1
        motor_options = robot.get_motors_options()
        motor_options["PendulumJoint"]['enableArmature'] = True
        motor_options["PendulumJoint"]['armature'] = J
        robot.set_motors_options(motor_options)

        # Set fixed body constraint.
        freeflyer_constraint = jiminy.FixedFrameConstraint("world")
        robot.add_constraint("world", freeflyer_constraint)

        # Create an engine: simulate a spring internal dynamics
        k_spring = 500

        def spring_force(t, q, v, sensors_data, u_custom):
            u_custom[:] = -k_spring * q[-1]

        engine = jiminy.Engine()
        setup_controller_and_engine(engine,
                                    robot,
                                    internal_dynamics=spring_force)

        # Configure the engine
        engine_options = engine.get_options()
        engine_options["stepper"]["solver"] = "runge_kutta_dopri5"
        engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1
        engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1
        engine_options["world"]["gravity"] = np.zeros(6)
        engine.set_options(engine_options)

        # Run simulation and extract some information from log data
        x0 = np.array([0.1, 0.0])
        qInit, vInit = neutral_state(robot, split=True)
        qInit[-1], vInit[-1] = x0
        xInit = np.concatenate((qInit, vInit))
        tf = 2.0
        time, q_jiminy, v_jiminy = simulate_and_get_state_evolution(engine,
                                                                    tf,
                                                                    xInit,
                                                                    split=True)

        # Analytical solution: dynamics should be unmodified by
        # the constraint, so we have a simple mass on a spring.
        I_eq = self.I + J
        A = np.array([[0, 1], [-k_spring / I_eq, 0]])
        x_analytical = np.stack(
            [scipy.linalg.expm(A * t).dot(x0) for t in time], axis=0)

        self.assertTrue(
            np.allclose(q_jiminy[:, :-1], qInit[:-1], atol=TOLERANCE))
        self.assertTrue(
            np.allclose(v_jiminy[:, :-1], vInit[:-1], atol=TOLERANCE))
        self.assertTrue(
            np.allclose(q_jiminy[:, -1], x_analytical[:, 0], atol=TOLERANCE))
        self.assertTrue(
            np.allclose(v_jiminy[:, -1], x_analytical[:, 1], atol=TOLERANCE))
Пример #8
0
    def test_constraint_external_force(self):
        """
        @brief    Test support of external force applied with constraints.

        @details  To provide a non-trivial test case with an external force
                  non-colinear to the constraints, simulate two masses
                  oscillating, one along the x axis and the other along the y
                  axis, with a spring between them (in diagonal). The system
                  may be represented as such ((f) indicates fixed bodies)

                  [M_22 (f)]
                      ^
                      ^
                    [M_21]\<>\
                      ^     \<>\
                      ^       \<>\
                      ^         \<>\
                    [O (f)] <><> [M_11] <><> [M_12 (f)]
        """
        # Build two robots with freeflyers, with a freeflyer and a fixed second
        # body constraint.

        # Rebuild the model with a freeflyer
        robots = [jiminy.Robot(), jiminy.Robot()]
        engine = jiminy.EngineMultiRobot()

        # Configure the engine
        engine_options = engine.get_options()
        engine_options["stepper"]["solver"] = "runge_kutta_dopri5"
        engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1
        engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1
        engine.set_options(engine_options)

        # Define some internal parameters
        systems_names = ['FirstSystem', 'SecondSystem']
        k = np.array([[100, 50], [80, 120]])
        nu = np.array([[0.2, 0.01], [0.05, 0.1]])
        k_cross = 100

        # Initialize and configure the engine
        for i in [0, 1]:
            # Load robot
            robots[i] = load_urdf_default(
                self.urdf_name, self.motors_names, has_freeflyer=True)

            # Apply constraints
            freeflyer_constraint = jiminy.FixedFrameConstraint("world")
            robots[i].add_constraint("world", freeflyer_constraint)
            fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass")
            robots[i].add_constraint("fixMass", fix_mass_constraint)

            # Create controller
            class Controller:
                def __init__(self, k, nu):
                    self.k = k
                    self.nu = nu

                def compute_command(self, t, q, v, sensors_data, command):
                    pass

                def internal_dynamics(self, t, q, v, sensors_data, u_custom):
                    u_custom[6:] = - self.k * q[7:] - self.nu * v[6:]

            controller = Controller(k[i, :], nu[i, :])
            controller = jiminy.BaseControllerFunctor(
                controller.compute_command, controller.internal_dynamics)
            controller.initialize(robots[i])

            # Add system to engine
            engine.add_system(systems_names[i], robots[i], controller)

        # Add coupling force
        def force(t, q1, v1, q2, v2, f):
            # Putting a linear spring between both systems would actually
            # decouple them (the force applied on each system would be a
            # function of this system state only). So we use a nonlinear
            # stiffness, proportional to the square of the distance of both
            # systems to the origin.
            d2 = q1[7] ** 2 + q2[7] ** 2
            f[0] = - k_cross * (1 + d2) * q1[7]
            f[1] = + k_cross * (1 + d2) * q2[7]

        engine.register_force_coupling(
            systems_names[0], systems_names[1], "FirstMass", "FirstMass", force)

        # Initialize the whole system.
        x_init = {}

        ## First system: freeflyer at identity
        x_init['FirstSystem'] = np.zeros(17)
        x_init['FirstSystem'][7:9] = self.x0[:2]
        x_init['FirstSystem'][-2:] = self.x0[2:]
        x_init['FirstSystem'][6] = 1.0

        ## Second system: rotation by pi/2 around Z to bring X axis to Y axis
        x_init['SecondSystem'] = x_init['FirstSystem'].copy()
        x_init['SecondSystem'][5:7] = np.sqrt(2) / 2.0

        # Run simulation and extract some information from log data
        time, x_jiminy = simulate_and_get_state_evolution(
            engine, self.tf, x_init, split=False)

        # Verify that both freeflyers didn't moved
        for x in x_jiminy:
            self.assertTrue(np.allclose(x[:, 9:15], 0.0, atol=TOLERANCE))
            self.assertTrue(np.allclose(x[:, :7], x[0, :7], atol=TOLERANCE))

        # Extract coordinates in a minimum state vector
        x_jiminy_extract = np.hstack([x[:, [7, 8, 15, 16]] for x in x_jiminy])

        # Define dynamics of this system
        def system_dynamics(t, x):
            # Velocity to position
            dx = np.zeros(8)
            dx[:2] = x[2:4]
            dx[4:6] = x[6:8]

            # Compute acceleration linked to the spring
            for i in range(2):
                dx[2 + 4 * i] = (
                    - k[i, 0] * x[4 * i] - nu[i, 0] * x[2 + 4 * i]
                    + k[i, 1] * x[1 + 4 * i] + nu[i, 1] * x[3 + 4 * i])

            # Coupling force between both system
            dsquared = x[0] ** 2 + x[4] ** 2
            dx[2] += - k_cross * (1 + dsquared) * x[0]
            dx[6] += - k_cross * (1 + dsquared) * x[4]

            for i in [0, 1]:
                # Divide forces by mass
                dx[2 + 4 * i] /= self.m[0]

                # Second mass accelration should be opposite of the first
                dx[3 + 4 * i] = -dx[2 + 4 * i]

            return dx

        x0 = np.hstack([x_init[key][[7, 8, 15, 16]] for key in x_init])
        x_python = integrate_dynamics(time, x0, system_dynamics)
        self.assertTrue(np.allclose(
            x_jiminy_extract, x_python, atol=TOLERANCE))