def setUp(self) -> None: problem1 = OneMax(number_of_bits=512) self.emas1 = Emas( problem=problem1, initial_population_size=1000, initial_inidividual_energy=10, reproduction_threshold=20, energy_exchange_operator=FractionEnergyExchange(0.5), death_operator=ThresholdDeath(threshold=5, neighbours_operator=RandomNeighbours()), termination_criterion=StoppingByEvaluations(max_evaluations=100000), neighbours_operator=RandomNeighbours(), reproduction_operator=FractionEnergyReproduction(0.5, BitFlipMutation(0.5), SPXCrossover(0.5)) ) problem2 = Sphere(number_of_variables=10) self.emas2 = Emas( problem=problem2, initial_population_size=1000, initial_inidividual_energy=10, reproduction_threshold=20, energy_exchange_operator=FractionEnergyExchange(0.5), death_operator=ThresholdDeath(threshold=5, neighbours_operator=RandomNeighbours()), termination_criterion=StoppingByEvaluations(max_evaluations=50000), neighbours_operator=RandomNeighbours(), reproduction_operator=FractionEnergyReproduction(0.5, PolynomialMutation(0.5), SBXCrossover(0.5)) )
from jmetal.algorithm.singleobjective.simulated_annealing import SimulatedAnnealing from jmetal.operator import BitFlipMutation from jmetal.problem import OneMax from jmetal.util.solution import print_function_values_to_file, print_variables_to_file from jmetal.util.termination_criterion import StoppingByEvaluations if __name__ == '__main__': problem = OneMax(number_of_bits=1024) max_evaluations = 20000 algorithm = SimulatedAnnealing( problem=problem, mutation=BitFlipMutation(probability=1.0 / problem.number_of_bits), termination_criterion=StoppingByEvaluations(max=max_evaluations)) algorithm.run() result = algorithm.get_result() # Save results to file print_function_values_to_file( result, 'FUN.' + algorithm.get_name() + "." + problem.get_name()) print_variables_to_file( result, 'VAR.' + algorithm.get_name() + "." + problem.get_name()) print('Algorithm: ' + algorithm.get_name()) print('Problem: ' + problem.get_name()) print('Solution: ' + result.get_binary_string()) print('Fitness: ' + str(result.objectives[0])) print('Computing time: ' + str(algorithm.total_computing_time))
from jmetal.algorithm.singleobjective.simulated_annealing import SimulatedAnnealing from jmetal.operator import BitFlipMutation from jmetal.problem import OneMax from jmetal.util.observer import PrintObjectivesObserver from jmetal.util.solution_list import print_function_values_to_file, print_variables_to_file from jmetal.util.termination_criterion import StoppingByEvaluations if __name__ == '__main__': problem = OneMax(number_of_bits=512) max_evaluations = 20000 algorithm = SimulatedAnnealing( problem=problem, mutation=BitFlipMutation(probability=1.0 / problem.number_of_bits), termination_criterion=StoppingByEvaluations(max=max_evaluations)) objectives_observer = PrintObjectivesObserver(frequency=1000) algorithm.observable.register(observer=objectives_observer) algorithm.run() result = algorithm.get_result() # Save results to file print_function_values_to_file( result, 'FUN.' + algorithm.get_name() + "." + problem.get_name()) print_variables_to_file( result, 'VAR.' + algorithm.get_name() + "." + problem.get_name()) print('Algorithm: ' + algorithm.get_name()) print('Problem: ' + problem.get_name()) print('Solution: ' + result.get_binary_string())
from jmetal.algorithm.multiobjective.nsgaii import NSGAII from jmetal.operator import BitFlipMutation, SPXCrossover from jmetal.problem import OneMax from jmetal.util.comparator import DominanceComparator from jmetal.util.observer import PrintObjectivesObserver from jmetal.util.solutions_utils import print_function_values_to_file, print_variables_to_file from jmetal.util.termination_criterion import StoppingByEvaluations if __name__ == '__main__': binary_string_length = 512 problem = OneMax(binary_string_length) max_evaluations = 20000 algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=1, mutation=BitFlipMutation(probability=1.0 / binary_string_length), crossover=SPXCrossover(probability=1.0), termination_criterion=StoppingByEvaluations(max=max_evaluations), dominance_comparator=DominanceComparator() ) algorithm.observable.register(observer=PrintObjectivesObserver(1000)) algorithm.run() front = algorithm.get_result() # Save results to file print_function_values_to_file(front, 'FUN.'+ algorithm.get_name()+"-"+problem.get_name())