Пример #1
0
    def test_should_replacement_return_the_list_if_the_offspring_list_is_empty(self):
        """
        5 1
        4   2
        3     3
        2
        1         4
        0 1 2 3 4 5
        """
        ranking = StrengthRanking()
        density_estimator = KNearestNeighborDensityEstimator(1)

        replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator)

        solution1 = Solution(2, 2)
        solution1.objectives = [1, 5]
        solution2 = Solution(2, 2)
        solution2.objectives = [2, 4]
        solution3 = Solution(2, 2)
        solution3.objectives = [3, 3]
        solution4 = Solution(2, 2)
        solution4.objectives = [5, 1]

        solution_list = [solution1, solution2, solution3, solution4]
        result_list = replacement.replace(solution_list, [])

        self.assertEqual(4, len(result_list))
        self.assertEqual(0, solution1.attributes["strength_ranking"])
        self.assertEqual(0, solution2.attributes["strength_ranking"])
        self.assertEqual(0, solution3.attributes["strength_ranking"])
        self.assertEqual(0, solution4.attributes["strength_ranking"])
Пример #2
0
    def test_should_replacement_return_the_right_value_case1(self):
        """
        5 1
        4   2
        3     3
        2
        1         4
        0 1 2 3 4 5

        List: 1,2,3   OffspringList: 4
        Expected result: 4, 1, 3
        """
        ranking = StrengthRanking()
        density_estimator = KNearestNeighborDensityEstimator(1)

        replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator)

        solution1 = Solution(2, 2)
        solution1.objectives = [1, 5]
        solution2 = Solution(2, 2)
        solution2.objectives = [2, 4]
        solution3 = Solution(2, 2)
        solution3.objectives = [3, 3]
        solution4 = Solution(2, 2)
        solution4.objectives = [5, 1]

        solution_list = [solution1, solution2, solution3]
        offspring_list = [solution4]
        result_list = replacement.replace(solution_list, offspring_list)

        self.assertEqual(3, len(result_list))
        self.assertTrue(solution1 in result_list)
        self.assertTrue(solution3 in result_list)
        self.assertTrue(solution4 in result_list)
Пример #3
0
    def __init__(
        self,
        problem: Problem,
        dominance_comparator: Comparator = store.default_comparator,
        max_evaluations: int = 250,
        individual_population_size: int = 100,
        report_interval: int = 100,
        dataDirectory: str = "./decmopy/decmo2/weigths",
    ):
        super().__init__()
        self.problem = problem
        self.population_size = individual_population_size
        self.max_evaluations = max_evaluations
        self.report_interval = report_interval
        self.dataDirectory = dataDirectory
        self.mix_interval = 1
        """Replacement"""
        ranking = FastNonDominatedRanking(dominance_comparator)
        density_estimator = CrowdingDistance()
        self.r = RankingAndDensityEstimatorReplacement(
            ranking, density_estimator, RemovalPolicyType.SEQUENTIAL)

        self.MIN_VALUES = 0
        self.MAX_VALUES = 1
        min_values: List[float] = []
        max_values: List[float] = []
        for _ in range(problem.number_of_objectives):
            min_values.append(sys.float_info.max)
            max_values.append(sys.float_info.min)
        self.extreme_values: List[List[float]] = []
        self.extreme_values.append(min_values)
        self.extreme_values.append(max_values)
Пример #4
0
    def replacement(self, population: List[S],
                    offspring_population: List[S]) -> List[List[S]]:
        """ This method joins the current and offspring populations to produce the population of the next generation
        by applying the ranking and crowding distance selection.

        :param population: Parent population.
        :param offspring_population: Offspring population.
        :return: New population after ranking and crowding distance selection is applied.
        """
        ranking = FastNonDominatedRanking(self.dominance_comparator)
        density_estimator = CrowdingDistance()

        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator,
                                                  RemovalPolicyType.ONE_SHOT)
        solutions = r.replace(population, offspring_population)

        front = self.get_result()

        if type(front) is not list:
            solutions = [front]

        for solution in front:
            print(solution.variables[0])

        for solution in front:
            print(str(front.index(solution)) + ": ",
                  sep='  ',
                  end='',
                  flush=True)
            print(solution.objectives, sep='  ', end='', flush=True)
            print()

        return solutions
Пример #5
0
    def replacement(self, population: List[S],
                    offspring_population: List[S]) -> List[List[S]]:

        ranking = StrengthRanking(self.dominance_comparator)
        density_estimator = KNearestNeighborDensityEstimator()

        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator,
                                                  RemovalPolicyType.SEQUENTIAL)
        solutions = r.replace(population, offspring_population)
        front = get_non_dominated_solutions(solutions)
        objective1 = -1 / self.Uobjecive1 * np.array(
            [solution.objectives[0] for solution in front])
        objective2 = -1 / self.Uobjecive2 * np.array(
            [solution.objectives[1] for solution in front])
        HV = calculateHypervolume(list(zip(objective1, objective2)))
        print('Hypervolume;', HV)
        self.hypervolumeByGeneration.append(HV)
        # DO IGD calculation here
        IGD = InvertedGenerationalDistance(self.reference_front)
        igd = IGD.compute(
            list(
                zip(-np.array([solution.objectives[0] for solution in front]),
                    -np.array([solution.objectives[1]
                               for solution in front]))))
        print('IGD1:', igd)
        # obj1front=1/self.Uobjecive1*self.reference_front[:, 0]
        # obj2front=1/self.Uobjecive2*self.reference_front[:,1]
        # igd2 = calculateIGD(list(zip(objective1,objective2)), list(zip(obj1front,obj2front)))
        # print('IGD2:',igd2)
        self.IGDbyGeneration.append(igd)
        return solutions
Пример #6
0
    def replacement(self, population: List[S], offspring_population: List[S]) -> List[List[S]]:


        ranking = FastNonDominatedRanking(self.dominance_comparator)
        density_estimator = CrowdingDistance()
        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator, RemovalPolicyType.ONE_SHOT)
        solutions = r.replace(population, offspring_population)

        return solutions
Пример #7
0
    def test_should_replacement_return_the_right_value_case3(self):
        """"""

        points_population = [
            [0.13436424411240122, 4.323216008886963],
            [0.23308445025757263, 4.574937990387161],
            [0.17300740157905092, 4.82329350808847],
            [0.9571162814602269, 3.443495331489301],
            [0.25529404008730594, 3.36387501100745],
            [0.020818108509287336, 5.1051826661880515],
            [0.8787178982088466, 3.2716009445324103],
            [0.6744550697237632, 3.901350307095427],
            [0.7881164487252263, 3.1796004913916516],
            [0.1028341459863098, 4.9409270526888935],
        ]

        points_offspring_population = [
            [0.3150521745650882, 4.369120371847888],
            [0.8967291504209932, 2.506948771242972],
            [0.6744550697237632, 3.9361442668874504],
            [0.9571162814602269, 3.4388386707431433],
            [0.13436424411240122, 4.741872175943253],
            [0.25529404008730594, 2.922302861104415],
            [0.23308445025757263, 4.580180404770213],
            [0.23308445025757263, 4.591260299892424],
            [0.9571162814602269, 2.9865495383518694],
            [0.25529404008730594, 3.875587748122183],
        ]

        ranking = FastNonDominatedRanking()
        density_estimator = KNearestNeighborDensityEstimator(1)

        population = []
        for i in range(len(points_population)):
            population.append(Solution(2, 2))
            population[i].objectives = points_population[i]

        offspring_population = []
        for i in range(len(points_offspring_population)):
            offspring_population.append(Solution(2, 2))
            offspring_population[i].objectives = points_offspring_population[i]

        replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator)
        result_list = replacement.replace(population, offspring_population)

        self.assertEqual(10, len(result_list))

        for solution in result_list[0:4]:
            self.assertEqual(0, solution.attributes["dominance_ranking"])
        for solution in result_list[5:9]:
            self.assertEqual(1, solution.attributes["dominance_ranking"])
Пример #8
0
    def replacement(self, population: List[S], offspring_population: List[S]) -> List[List[S]]:
        """This method joins the current and offspring populations to produce the population of the next generation
        by applying the ranking and crowding distance selection.

        :param population: Parent population.
        :param offspring_population: Offspring population.
        :return: New population after ranking and crowding distance selection is applied.
        """
        ranking = StrengthRanking(self.dominance_comparator)
        density_estimator = KNearestNeighborDensityEstimator()

        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator, RemovalPolicyType.SEQUENTIAL)
        solutions = r.replace(population, offspring_population)

        return solutions
Пример #9
0
    def replacement(self, population: List[S], offspring_population: List[S]) -> List[List[S]]:
        """ This method joins the current and offspring populations to produce the population of the next generation
        by applying the ranking and crowding distance selection.

        :param population: Parent population.
        :param offspring_population: Offspring population.
        :return: New population after ranking and crowding distance selection is applied.
        """
        ranking = FastNonDominatedRanking()
        density_estimator = CrowdingDistance()

        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator, RemovalPolicyType.ONE_SHOT)
        solutions = r.replace(population, offspring_population)

        return solutions
Пример #10
0
    def test_should_replacement_return_the_right_value_case2(self):
        """
        5 1
        4   2
        3     3
        2    5
        1         4
        0 1 2 3 4 5

        List: 1,2,4   OffspringList: 3,5
        Expected result: 1, 5, 4
        """
        ranking = StrengthRanking()
        density_estimator = KNearestNeighborDensityEstimator(1)

        replacement = RankingAndDensityEstimatorReplacement(ranking, density_estimator)

        solution1 = Solution(2, 2)
        solution1.objectives = [1, 5]
        solution2 = Solution(2, 2)
        solution2.objectives = [2, 4]
        solution3 = Solution(2, 2)
        solution3.objectives = [3, 3]
        solution4 = Solution(2, 2)
        solution4.objectives = [5, 1]
        solution5 = Solution(2, 2)
        solution5.objectives = [2.5, 2.5]

        solution_list = [solution1, solution2, solution4]
        offspring_list = [solution3, solution5]
        result_list = replacement.replace(solution_list, offspring_list)

        self.assertEqual(0, solution1.attributes["strength_ranking"])
        self.assertEqual(0, solution2.attributes["strength_ranking"])
        self.assertEqual(1, solution3.attributes["strength_ranking"])
        self.assertEqual(0, solution4.attributes["strength_ranking"])
        self.assertEqual(0, solution5.attributes["strength_ranking"])

        self.assertEqual(3, len(result_list))
        self.assertTrue(solution1 in result_list)
        self.assertTrue(solution5 in result_list)
        self.assertTrue(solution4 in result_list)
Пример #11
0
    def replacement(self, population: List[S], offspring_population: List[S]) -> List[List[S]]:
        """ This method joins the current and offspring populations to produce the population of the next generation
        by applying the ranking and crowding distance selection.

        :param population: Parent population.
        :param offspring_population: Offspring population.
        :return: New population after ranking and crowding distance selection is applied.
        """
        ranking = FastNonDominatedRanking(self.dominance_comparator)
        density_estimator = CrowdingDistance()

        # gradient steps
        # append new solutions to the offspring
        grad_sols = self.problem.step_discrepancy(population)
        grad_sols = self.evaluate(grad_sols)
        offspring_population.extend(grad_sols)

        r = RankingAndDensityEstimatorReplacement(ranking, density_estimator, RemovalPolicyType.ONE_SHOT)
        solutions = r.replace(population, offspring_population)

        return solutions
Пример #12
0
    def __init__(
        self,
        problem: Problem,
        dominance_comparator: Comparator = store.default_comparator,
        max_iterations: int = 250,
        individual_population_size: int = 100,
        report_interval: int = 100,
    ):
        super().__init__()

        self.problem = problem
        self.population_size = individual_population_size
        self.max_iterations = max_iterations
        self.report_interval = report_interval
        self.mix_interval = self.population_size / 10
        """Replacement"""
        ranking = FastNonDominatedRanking(dominance_comparator)
        density_estimator = CrowdingDistance()

        self.r = RankingAndDensityEstimatorReplacement(
            ranking, density_estimator, RemovalPolicyType.SEQUENTIAL)
Пример #13
0
class DECMO_INTEG(Algorithm[S, R]):
    def __init__(
        self,
        problem: Problem,
        dominance_comparator: Comparator = store.default_comparator,
        max_iterations: int = 250,
        individual_population_size: int = 100,
        report_interval: int = 100,
    ):
        super().__init__()

        self.problem = problem
        self.population_size = individual_population_size
        self.max_iterations = max_iterations
        self.report_interval = report_interval
        self.mix_interval = self.population_size / 10
        """Replacement"""
        ranking = FastNonDominatedRanking(dominance_comparator)
        density_estimator = CrowdingDistance()

        self.r = RankingAndDensityEstimatorReplacement(
            ranking, density_estimator, RemovalPolicyType.SEQUENTIAL)

    def run(self) -> List[S]:
        pool_1_size = self.population_size
        pool_2_size = self.population_size

        selection_operator_1 = BinaryTournamentSelection()
        crossover_operator_1 = IntegerSBXCrossover(1.0, 20.0)
        mutation_operator_1 = IntegerPolynomialMutation(
            1.0 / self.problem.number_of_variables, 20.0)
        selection_operator_2 = DifferentialEvolutionSelection()
        crossover_operator_2 = DifferentialEvolutionCrossover(0.2, 0.5, 0.5)

        dominance = DominanceComparator()

        max_iterations = self.max_iterations
        iterations = 0

        parent_1: List[IntegerSolution] = [None, None]

        generational_hv: List[float] = []

        current_gen = 0
        """Create the initial subpopulation pools and evaluate them"""
        pool_1: List[IntegerSolution] = []
        for i in range(pool_1_size):
            pool_1.append(self.problem.create_solution())
            pool_1[i] = self.problem.evaluate(pool_1[i])

        pool_2: List[IntegerSolution] = []
        for i in range(pool_2_size):
            pool_2.append(self.problem.create_solution())
            pool_2[i] = self.problem.evaluate(pool_2[i])

        evaluations = pool_1_size + pool_2_size

        mix = self.mix_interval

        problem = self.problem

        h = HyperVolume(reference_point=[1] *
                        self.problem.number_of_objectives)

        initial_population = True
        """The main evolutionary cycle"""
        while iterations < max_iterations:
            combi: List[IntegerSolution] = []
            if not initial_population:
                offspring_pop_1: List[IntegerSolution] = []
                offspring_pop_2: List[IntegerSolution] = []
                """Evolve pool 1"""
                for i in range(pool_1_size):
                    parent_1[0] = selection_operator_1.execute(pool_1)
                    parent_1[1] = selection_operator_1.execute(pool_1)

                    child_1: IntegerSolution = crossover_operator_1.execute(
                        parent_1)[0]
                    child_1 = mutation_operator_1.execute(child_1)

                    child_1 = problem.evaluate(child_1)
                    evaluations += 1

                    offspring_pop_1.append(child_1)
                """Evolve pool 2"""
                for i in range(pool_2_size):
                    parent_2: List[
                        IntegerSolution] = selection_operator_2.execute(pool_2)

                    crossover_operator_2.current_individual = pool_2[i]
                    child_2 = crossover_operator_2.execute(parent_2)
                    child_2 = problem.evaluate(child_2[0])

                    evaluations += 1

                    result = dominance.compare(pool_2[i], child_2)

                    if result == -1:
                        offspring_pop_2.append(pool_2[i])
                    elif result == 1:
                        offspring_pop_2.append(child_2)
                    else:
                        offspring_pop_2.append(child_2)
                        offspring_pop_2.append(pool_2[i])

                ind_1 = pool_1[random.randint(0, pool_1_size - 1)]
                ind_2 = pool_2[random.randint(0, pool_2_size - 1)]

                offspring_pop_1.append(ind_1)
                offspring_pop_2.append(ind_2)

                offspring_pop_1.extend(pool_1)
                pool_1 = self.r.replace(offspring_pop_1[:pool_1_size],
                                        offspring_pop_1[pool_1_size:])

                pool_2 = self.r.replace(offspring_pop_2[:pool_2_size],
                                        offspring_pop_2[pool_2_size:])

                mix -= 1
                if mix == 0:
                    """Time to perform fitness sharing"""
                    mix = self.mix_interval
                    combi = combi + pool_1 + pool_2
                    # print("Combi size: ", len(combi))
                    """pool1size/10"""

                    combi = self.r.replace(
                        combi[:int(pool_1_size / 10)],
                        combi[int(pool_1_size / 10):len(combi)],
                    )
                    """
                    print(
                        "Sizes: ",
                        len(pool_1) + len(combi),
                        len(pool_2) + len(combi),
                        "\n",
                    )
                    """
                    pool_1 = self.r.replace(pool_1, combi)

                    pool_2 = self.r.replace(pool_2, combi)

            if initial_population:
                initial_population = False

            iterations += 1
            print("Iterations: ", str(iterations))
            """
            hval_1 = h.compute([s.objectives for s in pool_1])
            hval_2 = h.compute([s.objectives for s in pool_2])
            print("hval_1: ", str(hval_1))
            print("hval_2: ", str(hval_2), "\n")
            """

            new_gen = int(evaluations / self.report_interval)
            if new_gen > current_gen:
                combi = combi + pool_1 + pool_2

                combi = self.r.replace(combi[:(2 * pool_1_size)],
                                       combi[(2 * pool_1_size):])

                hval = h.compute([s.objectives for s in combi])
                for i in range(current_gen, new_gen, 1):
                    generational_hv.append(hval)

                current_gen = new_gen
        """#Write runtime generational HV to file"""
        """Return the first non dominated front"""
        combi_ini: List[IntegerSolution] = []
        combi_ini.extend(pool_1)
        combi_ini.extend(pool_2)
        combi_ini = self.r.replace(
            combi_ini[:pool_1_size + pool_2_size],
            combi_ini[pool_1_size + pool_2_size:],
        )
        return combi_ini

    def get_result(self) -> R:
        return self.solutions

    def get_name(self) -> str:
        return "DECMO"

    def create_initial_solutions(self) -> List[S]:
        pass

    def evaluate(self, IntegerSolutions: List[S]) -> List[S]:
        pass

    def stopping_condition_is_met(self) -> bool:
        pass

    def get_observable_data(self) -> dict:
        pass

    def init_progress(self) -> None:
        pass

    def step(self) -> None:
        pass

    def update_progress(self):
        pass
Пример #14
0
    def run(self):
        """ Execute the algorithm. """
        self.start_computing_time = time.time()

        create_solution = dask.delayed(self.problem.create_solution)
        evaluate_solution = dask.delayed(self.problem.evaluate)

        task_pool = as_completed([], with_results=True)

        for _ in range(self.number_of_cores):
            new_solution = create_solution()
            new_evaluated_solution = evaluate_solution(new_solution)
            future = self.client.compute(new_evaluated_solution)

            task_pool.add(future)

        batches = task_pool.batches()

        auxiliar_population = []
        while len(auxiliar_population) < self.population_size:
            batch = next(batches)
            for _, received_solution in batch:
                auxiliar_population.append(received_solution)

                if len(auxiliar_population) < self.population_size:
                    break

            # submit as many new tasks as we collected
            for _ in batch:
                new_solution = create_solution()
                new_evaluated_solution = evaluate_solution(new_solution)
                future = self.client.compute(new_evaluated_solution)

                task_pool.add(future)

        self.init_progress()

        # perform an algorithm step to create a new solution to be evaluated
        while not self.stopping_condition_is_met():
            batch = next(batches)

            for _, received_solution in batch:
                offspring_population = [received_solution]

                # replacement
                ranking = FastNonDominatedRanking(self.dominance_comparator)
                density_estimator = CrowdingDistance()

                r = RankingAndDensityEstimatorReplacement(
                    ranking, density_estimator, RemovalPolicyType.ONE_SHOT)
                auxiliar_population = r.replace(auxiliar_population,
                                                offspring_population)

                # selection
                mating_population = []
                for _ in range(2):
                    solution = self.selection_operator.execute(
                        auxiliar_population)
                    mating_population.append(solution)

                # Reproduction and evaluation
                new_task = self.client.submit(reproduction, mating_population,
                                              self.problem,
                                              self.crossover_operator,
                                              self.mutation_operator)
                task_pool.add(new_task)

                # update progress
                self.evaluations += 1
                self.solutions = auxiliar_population

                self.update_progress()

                if self.stopping_condition_is_met():
                    break

        self.total_computing_time = time.time() - self.start_computing_time

        # at this point, computation is done
        for future, _ in task_pool:
            future.cancel()
Пример #15
0
class DECMO2(Algorithm[S, R]):
    def __init__(
        self,
        problem: Problem,
        dominance_comparator: Comparator = store.default_comparator,
        max_evaluations: int = 250,
        individual_population_size: int = 100,
        report_interval: int = 100,
        dataDirectory: str = "./decmopy/decmo2/weigths",
    ):
        super().__init__()
        self.problem = problem
        self.population_size = individual_population_size
        self.max_evaluations = max_evaluations
        self.report_interval = report_interval
        self.dataDirectory = dataDirectory
        self.mix_interval = 1
        """Replacement"""
        ranking = FastNonDominatedRanking(dominance_comparator)
        density_estimator = CrowdingDistance()
        self.r = RankingAndDensityEstimatorReplacement(
            ranking, density_estimator, RemovalPolicyType.SEQUENTIAL)

        self.MIN_VALUES = 0
        self.MAX_VALUES = 1
        min_values: List[float] = []
        max_values: List[float] = []
        for _ in range(problem.number_of_objectives):
            min_values.append(sys.float_info.max)
            max_values.append(sys.float_info.min)
        self.extreme_values: List[List[float]] = []
        self.extreme_values.append(min_values)
        self.extreme_values.append(max_values)

    def run(self) -> List[S]:
        # selection operator 1
        selection_operator_1 = BinaryTournamentSelection()
        # selection operator 2
        selection_operator_2 = DifferentialEvolutionSelection()
        # crossover operator 1
        crossover_operator_1 = SBXCrossover(1.0, 20.0)
        # crossover operator 2
        crossover_operator_2 = DifferentialEvolutionCrossover(0.2, 0.5, 0.5)
        # crossover operator 3
        crossover_operator_3 = DifferentialEvolutionCrossover(1.0, 0.5, 0.5)
        # mutation operator 1
        mutation_operator_1 = PolynomialMutation(
            1.0 / self.problem.number_of_variables, 20.0)
        # dominance comparator
        dominance = DominanceComparator()

        # array that stores the "generational" HV quality
        generational_hv: List[float] = []

        parent_1: List[FloatSolution] = [None, None]
        parent_2: List[FloatSolution] = []
        parent_3: List[FloatSolution] = []

        # initialize some local and global variables
        pool_1: List[FloatSolution] = []
        pool_2: List[FloatSolution] = []

        # size of elite subset used for fitness sharing between subpopulations
        nrOfDirectionalSolutionsToEvolve = int(self.population_size / 5)
        # subpopulation 1
        pool_1_size = int(self.population_size -
                          (nrOfDirectionalSolutionsToEvolve / 2))
        # subpopulation 2
        pool_2_size = int(self.population_size -
                          (nrOfDirectionalSolutionsToEvolve / 2))

        print(
            str(pool_1_size) + " - " + str(nrOfDirectionalSolutionsToEvolve) +
            " - " + str(self.mix_interval))

        evaluations = 0
        current_gen = 0
        directionalArchiveSize = 2 * self.population_size
        weights = self.__create_uniform_weights(
            directionalArchiveSize, self.problem.number_of_objectives)

        directionalArchive = self.__create_directional_archive(weights)
        neighbourhoods = self.__create_neighbourhoods(directionalArchive,
                                                      self.population_size)

        nrOfReplacements = 1
        iniID = 0

        # Create the initial pools
        # pool1
        pool_1: List[FloatSolution] = []
        for _ in range(pool_1_size):
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_1.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1
        # pool2
        pool_2: List[FloatSolution] = []
        for _ in range(pool_2_size):
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_2.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1
        # directional archive initialization
        pool_A: List[FloatSolution] = []
        while iniID < directionalArchiveSize:
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_A.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1

        mix = self.mix_interval
        h = HyperVolume(reference_point=[1] *
                        self.problem.number_of_objectives)

        insertionRate: List[float] = [0, 0, 0]
        bonusEvals: List[int] = [0, 0, nrOfDirectionalSolutionsToEvolve]
        testRun = True

        # record the generational HV of the initial population
        combiAll: List[FloatSolution] = []
        cGen = int(evaluations / self.report_interval)
        if cGen > 0:
            combiAll = pool_1 + pool_2 + pool_A
            combiAll = self.r.replace(
                combiAll[:pool_1_size + pool_2_size],
                combiAll[pool_1_size + pool_2_size:],
            )
            hval = h.compute([s.objectives for s in combiAll])
            for _ in range(cGen):
                generational_hv.append(hval)
            current_gen = cGen

        # the main loop of the algorithm
        while evaluations < self.max_evaluations:
            offspringPop1: List[FloatSolution] = []
            offspringPop2: List[FloatSolution] = []
            offspringPop3: List[FloatSolution] = []

            dirInsertPool1: List[FloatSolution] = []
            dirInsertPool2: List[FloatSolution] = []
            dirInsertPool3: List[FloatSolution] = []

            # evolve pool1 - using SPEA2 evolutionary model
            nfe: int = 0
            while nfe < (pool_1_size + bonusEvals[0]):
                parent_1[0] = selection_operator_1.execute(pool_1)
                parent_1[1] = selection_operator_1.execute(pool_1)

                child1a: FloatSolution = crossover_operator_1.execute(
                    parent_1)[0]
                child1a = mutation_operator_1.execute(child1a)

                child1a = self.problem.evaluate(child1a)
                evaluations += 1
                nfe += 1

                offspringPop1.append(child1a)
                dirInsertPool1.append(child1a)

            # evolve pool2 - using DEMO SP evolutionary model
            i: int = 0
            unselectedIDs: List[int] = []
            for ID in range(len(pool_2)):
                unselectedIDs.append(ID)

            nfe = 0
            while nfe < (pool_2_size + bonusEvals[1]):
                index = random.randint(0, len(unselectedIDs) - 1)
                i = unselectedIDs[index]
                unselectedIDs.pop(index)

                parent_2 = selection_operator_2.execute(pool_2)

                crossover_operator_2.current_individual = pool_2[i]
                child2 = crossover_operator_2.execute(parent_2)
                child2 = self.problem.evaluate(child2[0])

                evaluations += 1
                nfe += 1

                result = dominance.compare(pool_2[i], child2)

                if result == -1:  # solution i dominates child
                    offspringPop2.append(pool_2[i])
                elif result == 1:  # child dominates
                    offspringPop2.append(child2)
                else:  # the two solutions are non-dominated
                    offspringPop2.append(child2)
                    offspringPop2.append(pool_2[i])

                dirInsertPool2.append(child2)

                if len(unselectedIDs) == 0:
                    for ID in range(len(pool_2)):
                        unselectedIDs.append(random.randint(
                            0,
                            len(pool_2) - 1))

            # evolve pool3 - Directional Decomposition DE/rand/1/bin
            IDs = self.__compute_neighbourhood_Nfe_since_last_update(
                neighbourhoods, directionalArchive,
                nrOfDirectionalSolutionsToEvolve)

            nfe = 0
            for j in range(len(IDs)):
                if nfe < bonusEvals[2]:
                    nfe += 1
                else:
                    break

                cID = IDs[j]

                chosenSol: FloatSolution = None
                if directionalArchive[cID].curr_sol != None:
                    chosenSol = directionalArchive[cID].curr_sol
                else:
                    chosenSol = pool_1[0]
                    print("error!")

                parent_3: List[FloatSolution] = [None, None, None]

                r1 = random.randint(0, len(neighbourhoods[cID]) - 1)
                r2 = random.randint(0, len(neighbourhoods[cID]) - 1)
                r3 = random.randint(0, len(neighbourhoods[cID]) - 1)
                while r2 == r1:
                    r2 = random.randint(0, len(neighbourhoods[cID]) - 1)
                while r3 == r1 or r3 == r2:
                    r3 = random.randint(0, len(neighbourhoods[cID]) - 1)

                parent_3[0] = directionalArchive[r1].curr_sol
                parent_3[1] = directionalArchive[r2].curr_sol
                parent_3[2] = directionalArchive[r3].curr_sol

                crossover_operator_3.current_individual = chosenSol
                child3 = crossover_operator_3.execute(parent_3)[0]
                child3 = mutation_operator_1.execute(child3)

                child3 = self.problem.evaluate(child3)
                evaluations += 1

                dirInsertPool3.append(child3)

            # compute directional improvements
            # pool1
            improvements = 0
            for j in range(len(dirInsertPool1)):
                testSol = dirInsertPool1[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            insertionRate[0] += (1.0 * improvements) / len(dirInsertPool1)

            # pool2
            improvements = 0
            for j in range(len(dirInsertPool2)):
                testSol = dirInsertPool2[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            insertionRate[1] += (1.0 * improvements) / len(dirInsertPool2)

            # pool3
            improvements = 0
            for j in range(len(dirInsertPool3)):
                testSol = dirInsertPool3[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            # on java, dividing a floating number by 0, returns NaN
            # on python, dividing a floating number by 0, returns an exception
            if len(dirInsertPool3) == 0:
                insertionRate[2] = None
            else:
                insertionRate[2] += (1.0 * improvements) / len(dirInsertPool3)

            for dr in directionalArchive:
                offspringPop3.append(dr.curr_sol)

            offspringPop1 = offspringPop1 + pool_1
            pool_1 = self.r.replace(offspringPop1[:pool_1_size],
                                    offspringPop1[pool_1_size:])
            pool_2 = self.r.replace(offspringPop2[:pool_2_size],
                                    offspringPop2[pool_2_size:])

            combi: List[FloatSolution] = []
            mix -= 1

            if mix == 0:
                mix = self.mix_interval
                combi = combi + pool_1 + pool_2 + offspringPop3
                print("Combi size: " + str(len(combi)))

                combi = self.r.replace(
                    combi[:nrOfDirectionalSolutionsToEvolve],
                    combi[nrOfDirectionalSolutionsToEvolve:],
                )

                insertionRate[0] /= self.mix_interval
                insertionRate[1] /= self.mix_interval
                if insertionRate[2] != None:
                    insertionRate[2] /= self.mix_interval
                """
                print(
                    "Insertion rates: "
                    + str(insertionRate[0])
                    + " - "
                    + str(insertionRate[1])
                    + " - "
                    + str(insertionRate[2])
                    + " - Test run:"
                    + str(testRun)
                )
                """
                if testRun:
                    if (insertionRate[0] > insertionRate[1]) and (
                            insertionRate[0] > insertionRate[2]):
                        print("SPEA2 win - bonus run!")
                        bonusEvals[0] = nrOfDirectionalSolutionsToEvolve
                        bonusEvals[1] = 0
                        bonusEvals[2] = 0
                    if (insertionRate[1] > insertionRate[0]) and (
                            insertionRate[1] > insertionRate[2]):
                        print("DE win - bonus run!")
                        bonusEvals[0] = 0
                        bonusEvals[1] = nrOfDirectionalSolutionsToEvolve
                        bonusEvals[2] = 0
                    if (insertionRate[2] > insertionRate[0]) and (
                            insertionRate[2] > insertionRate[1]):
                        print("Directional win - no bonus!")
                        bonusEvals[0] = 0
                        bonusEvals[1] = 0
                        bonusEvals[2] = nrOfDirectionalSolutionsToEvolve
                else:
                    print("Test run - no bonus!")
                    bonusEvals[0] = 0
                    bonusEvals[1] = 0
                    bonusEvals[2] = nrOfDirectionalSolutionsToEvolve

                testRun = not testRun

                insertionRate[0] = 0.0
                insertionRate[1] = 0.0
                insertionRate[2] = 0.0

                pool_1 = pool_1 + combi
                pool_2 = pool_2 + combi
                print("Sizes: " + str(len(pool_1)) + " " + str(len(pool_2)))

                pool_1 = self.r.replace(pool_1[:pool_1_size],
                                        pool_1[pool_1_size:])
                pool_2 = self.r.replace(pool_2[:pool_2_size],
                                        pool_2[pool_2_size:])

                self.__clear_Nfe_history(directionalArchive)

            hVal1 = h.compute([s.objectives for s in pool_1])
            hVal2 = h.compute([s.objectives for s in pool_2])
            hVal3 = h.compute([s.objectives for s in offspringPop3])

            newGen = int(evaluations / self.report_interval)

            if newGen > current_gen:
                print("Hypervolume: " + str(newGen) + " - " + str(hVal1) +
                      " - " + str(hVal2) + " - " + str(hVal3))
                combi = combi + pool_1 + pool_2 + offspringPop3
                combi = self.r.replace(combi[:self.population_size * 2],
                                       combi[self.population_size * 2:])
                hval = h.compute([s.objectives for s in combi])
                for j in range(current_gen, newGen):
                    generational_hv.append(hval)
                current_gen = newGen

        # return the final combined non-dominated set of maximum size = (populationSize * 2)
        combiAll: List[FloatSolution] = []
        combiAll = combiAll + pool_1 + pool_2 + pool_A
        combiAll = self.r.replace(combiAll[:self.population_size * 2],
                                  combiAll[self.population_size * 2:])
        return combiAll

    def __compute_euclidean_distance(self, vector1: List[float],
                                     vector2: List[float]):
        value = 0.0
        for i in range(len(vector1)):
            value += (vector1[i] - vector2[i]) * (vector1[i] - vector2[i])
        return math.sqrt(value)

    def __create_uniform_weights(self, dirArchiveSize: int,
                                 nrOfObjectives: int):
        lmdb = np.zeros(shape=(dirArchiveSize, nrOfObjectives))

        if nrOfObjectives == 2 and dirArchiveSize < 500:
            for n in range(dirArchiveSize):
                a = 1.0 * n / (dirArchiveSize - 1)
                lmdb[n][0] = a
                lmdb[n][1] = 1 - a
                print(lmdb[n][0])
                print(lmdb[n][1])
        else:
            dataFileName = ("W" + str(nrOfObjectives) + "D_" +
                            str(dirArchiveSize) + ".dat")
            data_path = self.dataDirectory + "/" + dataFileName
            print(dataFileName)
            print(data_path)

            dg = DistribGen()
            dg.create_distribution(self.problem.number_of_objectives,
                                   dirArchiveSize, data_path)

            try:
                i = j = 0
                with open(data_path) as f:
                    # lines = f.readlines()
                    lines = [line.rstrip() for line in f]

                for line in lines:
                    words = line.split()  # "tokenizer"
                    j = 0
                    for word in words:
                        value = float(word.replace(",", "."))
                        lmdb[i][j] = value
                        j += 1
                    i += 1
            except Exception as e:
                print(e)
                print("initUniformWeight: failed when reading for file: " +
                      data_path)
        return lmdb

    def __create_directional_archive(self, lmbd: List[float]):
        directionalArchive: List[DirectionRec] = []
        for i in range(len(lmbd)):
            di = DirectionRec(i, lmbd[i], None, sys.float_info.max, 0)
            directionalArchive.append(di)
        return directionalArchive

    def __compute_neighbourhood_Nfe_since_last_update(
        self,
        neighbourhoods: List[List[int]],
        directionalArchive: List[DirectionRec],
        intensificationClusters: int,
    ):
        averageNfe: List[CompRec] = []
        ID = 0

        for neighbourhood in neighbourhoods:
            avg = 0.0
            for nID in neighbourhood:
                avg += directionalArchive[nID].nfeSinceLastUpdate
            avg /= len(neighbourhood)

            averageNfe.append(CompRec(ID, avg))
            ID += 1
        averageNfe.sort()

        result: List[int] = []
        for i in range(intensificationClusters):
            result.append(averageNfe[len(averageNfe) - 1 - i].id)
        return result

    def __create_neighbourhoods(self, dirArchive: List[DirectionRec],
                                neighborhood_size: int):
        neighbourhoods: List[List[int]] = []

        for di1 in dirArchive:
            distToNeighbour: List[CompRec] = []
            for di2 in dirArchive:
                if di1.id != di2.id:
                    distToNeighbour.append(
                        CompRec(
                            di2.id,
                            self.__compute_euclidean_distance(
                                di1.weigh_vector, di2.weigh_vector),
                        ))
            distToNeighbour.sort()
            neighbourhood: List[int] = []
            for i in range(neighborhood_size):
                if i < len(distToNeighbour):
                    neighbourhood.append(distToNeighbour[i].id)
            neighbourhoods.append(neighbourhood)
        return neighbourhoods

    def __update_neighbourhoods(
        self,
        directionalArchive: List[DirectionRec],
        newSolution: FloatSolution,
        nrOfReplacements: int,
    ):
        improvedDistances: List[CompRec] = []
        isImprovement = False

        for cdr in directionalArchive:
            newFitnessValue = self.__evaluate_Tchebycheff_Fitness(
                newSolution, cdr.weigh_vector)
            if newFitnessValue < cdr.fitness_value:
                improvedDistances.append(CompRec(cdr.id, newFitnessValue))
                isImprovement = True
            else:
                cdr.nfeSinceLastUpdate = cdr.nfeSinceLastUpdate + 1

        improvedDistances.sort()
        improvedDistances.reverse()

        if isImprovement:
            for _ in range(nrOfReplacements):
                j = 0
                cdr = directionalArchive[improvedDistances[j].id]
                cdr.curr_sol = newSolution
                cdr.fitness_value = improvedDistances[j].value
                cdr.nfeSinceLastUpdate = 0
            return 1
        return 0

    def __evaluate_Tchebycheff_Fitness(self, individual: FloatSolution,
                                       lmbd: List[float]):
        max = sys.float_info.min

        for i in range(self.problem.number_of_objectives):
            diff = abs(individual.objectives[i] -
                       self.extreme_values[self.MIN_VALUES][i])
            tcheFuncVal: float = None

            if lmbd[i] == 0:
                tcheFuncVal = 0.000001 * diff
            else:
                tcheFuncVal = diff * lmbd[i]

            if tcheFuncVal > max:
                max = tcheFuncVal

        return max

    def __update_extreme_values(self, sol: FloatSolution):
        for i in range(self.problem.number_of_objectives):
            objValue = sol.objectives[i]
            if objValue < self.extreme_values[self.MIN_VALUES][i]:
                self.extreme_values[self.MIN_VALUES][i] = objValue
            if objValue > self.extreme_values[self.MAX_VALUES][i]:
                self.extreme_values[self.MAX_VALUES][i] = objValue

    def __clear_Nfe_history(self, directionalArchive: List[DirectionRec]):
        for dr in directionalArchive:
            dr.nfeSinceLastUpdate = 0

    def get_result(self) -> R:
        return self.solutions

    def get_name(self) -> str:
        return "DECMO"

    def create_initial_solutions(self) -> List[S]:
        pass

    def evaluate(self, solutions: List[S]) -> List[S]:
        pass

    def stopping_condition_is_met(self) -> bool:
        pass

    def get_observable_data(self) -> dict:
        pass

    def init_progress(self) -> None:
        pass

    def step(self) -> None:
        pass

    def update_progress(self):
        pass