Пример #1
0
def test_weak_array_key_map():

    def assert_empty_after_gc_collect(container, retries=3):
        for i in range(retries):
            if len(container) == 0:
                return
            gc.collect()
        assert len(container) == 0

    a = np.ones(42)
    m = _WeakArrayKeyMap()
    m.set(a, 'a')
    assert m.get(a) == 'a'

    b = a
    assert m.get(b) == 'a'
    m.set(b, 'b')
    assert m.get(a) == 'b'

    del a
    gc.collect()
    assert len(m._data) == 1
    assert m.get(b) == 'b'

    del b
    assert_empty_after_gc_collect(m._data)

    c = np.ones(42)
    m.set(c, 'c')
    assert len(m._data) == 1
    assert m.get(c) == 'c'

    with raises(KeyError):
        m.get(np.ones(42))

    del c
    assert_empty_after_gc_collect(m._data)

    # Check that creating and dropping numpy arrays with potentially the same
    # object id will not cause the map to get confused.
    def get_set_get_collect(m, i):
        a = np.ones(42)
        with raises(KeyError):
            m.get(a)
        m.set(a, i)
        assert m.get(a) == i
        return id(a)

    unique_ids = set([get_set_get_collect(m, i) for i in range(1000)])
    if platform.python_implementation() == 'CPython':
        # On CPython (at least) the same id is often reused many times for the
        # temporary arrays created under the local scope of the
        # get_set_get_collect function without causing any spurious lookups /
        # insertions in the map.
        assert len(unique_ids) < 100
def test_weak_array_key_map_no_pickling():
    m = _WeakArrayKeyMap()
    with raises(pickle.PicklingError):
        pickle.dumps(m)
Пример #3
0
def test_weak_array_key_map_no_pickling():
    m = _WeakArrayKeyMap()
    with raises(pickle.PicklingError):
        pickle.dumps(m)