def recommend(algo, users, n, candidates=None, *, nprocs=None, dask_result=False, **kwargs): """ Batch-recommend for multiple users. The provided algorithm should be a :py:class:`algorithms.Recommender`. Args: algo: the algorithm users(array-like): the users to recommend for n(int): the number of recommendations to generate (None for unlimited) candidates: the users' candidate sets. This can be a function, in which case it will be passed each user ID; it can also be a dictionary, in which case user IDs will be looked up in it. Pass ``None`` to use the recommender's built-in candidate selector (usually recommended). nprocs(int): The number of processes to use for parallel recommendations. Passed as ``n_jobs`` to :cls:`joblib.Parallel`. The default, ``None``, will make the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager. dask_result(bool): Whether to return a Dask data frame instead of a Pandas one. Returns: A frame with at least the columns ``user``, ``rank``, and ``item``; possibly also ``score``, and any other columns returned by the recommender. """ rec_algo = Recommender.adapt(algo) if candidates is None and rec_algo is not algo: warnings.warn('no candidates provided and algo is not a recommender, unlikely to work') del algo # don't need reference any more if 'ratings' in kwargs: warnings.warn('Providing ratings to recommend is not supported', DeprecationWarning) candidates = __standard_cand_fun(candidates) loop = Parallel(n_jobs=nprocs) path = None try: with loop: backend = loop._backend.__class__.__name__ njobs = loop._effective_n_jobs() _logger.info('parallel backend %s, effective njobs %s', backend, njobs) using_dask = backend == 'DaskDistributedBackend' if using_dask: _logger.debug('pre-scattering algorithm %s', rec_algo) futures = loop._backend.client.scatter([rec_algo], broadcast=True, hash=False) rec_algo = _AlgoKey('future', futures[0]) elif njobs > 1: fd, path = tempfile.mkstemp(prefix='lkpy-predict', suffix='.pkl') path = pathlib.Path(path) os.close(fd) _logger.debug('pre-serializing algorithm %s to %s', rec_algo, path) dump(rec_algo, path) rec_algo = _AlgoKey('file', path) _logger.info('recommending for %d users (nprocs=%s)', len(users), nprocs) timer = util.Stopwatch() results = loop(delayed(_recommend_user)(rec_algo, user, n, candidates(user)) for user in users) if using_dask or dask_result: results = ddf.concat(results, interleave_partitions=True) if not dask_result: # only if we're running inside dask, but don't want results results = results.compute() else: results = pd.concat(results, ignore_index=True) _logger.info('recommended for %d users in %s', len(users), timer) finally: util.delete_sometime(path) return results
def predict(algo, pairs, *, nprocs=None): """ Generate predictions for user-item pairs. The provided algorithm should be a :py:class:`algorithms.Predictor` or a function of two arguments: the user ID and a list of item IDs. It should return a dictionary or a :py:class:`pandas.Series` mapping item IDs to predictions. To use this function, provide a pre-fit algorithm:: >>> from lenskit.algorithms.basic import Bias >>> from lenskit.metrics.predict import rmse >>> ratings = util.load_ml_ratings() >>> bias = Bias() >>> bias.fit(ratings[:-1000]) <lenskit.algorithms.basic.Bias object at ...> >>> preds = predict(bias, ratings[-1000:]) >>> preds.head() user item rating timestamp prediction 99004 664 8361 3.0 1393891425 3.288286 99005 664 8528 3.5 1393891047 3.559119 99006 664 8529 4.0 1393891173 3.573008 99007 664 8636 4.0 1393891175 3.846268 99008 664 8641 4.5 1393890852 3.710635 >>> rmse(preds['prediction'], preds['rating']) 0.8326992222... Args: algo(lenskit.algorithms.Predictor): A rating predictor function or algorithm. pairs(pandas.DataFrame): A data frame of (``user``, ``item``) pairs to predict for. If this frame also contains a ``rating`` column, it will be included in the result. nprocs(int): The number of processes to use for parallel batch prediction. Passed as ``n_jobs`` to :cls:`joblib.Parallel`. The default, ``None``, will make the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager. Returns: pandas.DataFrame: a frame with columns ``user``, ``item``, and ``prediction`` containing the prediction results. If ``pairs`` contains a `rating` column, this result will also contain a `rating` column. """ loop = Parallel(n_jobs=nprocs) path = None try: if loop._effective_n_jobs() > 1: fd, path = tempfile.mkstemp(prefix='lkpy-predict', suffix='.pkl') path = pathlib.Path(path) os.close(fd) _logger.debug('pre-serializing algorithm %s to %s', algo, path) dump(algo, path) algo = _AlgoKey('file', path) results = loop( delayed(_predict_user)(algo, user, udf) for (user, udf) in pairs.groupby('user')) results = pd.concat(results, ignore_index=True) finally: util.delete_sometime(path) if 'rating' in pairs: return pairs.join(results.set_index(['user', 'item']), on=('user', 'item')) return results
def predict(algo, pairs, *, n_jobs=None, **kwargs): """ Generate predictions for user-item pairs. The provided algorithm should be a :py:class:`algorithms.Predictor` or a function of two arguments: the user ID and a list of item IDs. It should return a dictionary or a :py:class:`pandas.Series` mapping item IDs to predictions. To use this function, provide a pre-fit algorithm:: >>> from lenskit.algorithms.basic import Bias >>> from lenskit.metrics.predict import rmse >>> from lenskit import datasets >>> ratings = datasets.MovieLens('ml-latest-small').ratings >>> bias = Bias() >>> bias.fit(ratings[:-1000]) <lenskit.algorithms.basic.Bias object at ...> >>> preds = predict(bias, ratings[-1000:]) >>> preds.head() user item rating timestamp prediction 99004 664 8361 3.0 1393891425 3.288286 99005 664 8528 3.5 1393891047 3.559119 99006 664 8529 4.0 1393891173 3.573008 99007 664 8636 4.0 1393891175 3.846268 99008 664 8641 4.5 1393890852 3.710635 >>> rmse(preds['prediction'], preds['rating']) 0.8326992222... Args: algo(lenskit.algorithms.Predictor): A rating predictor function or algorithm. pairs(pandas.DataFrame): A data frame of (``user``, ``item``) pairs to predict for. If this frame also contains a ``rating`` column, it will be included in the result. n_jobs(int): The number of processes to use for parallel batch prediction. Passed as ``n_jobs`` to :class:`joblib.Parallel`. The default, ``None``, will result in a call to :func:`util.proc_count`(``None``), so the process will be the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager or the ``LK_NUM_PROCS`` environment variable is set. Returns: pandas.DataFrame: a frame with columns ``user``, ``item``, and ``prediction`` containing the prediction results. If ``pairs`` contains a `rating` column, this result will also contain a `rating` column. """ if n_jobs is None and 'nprocs' in kwargs: n_jobs = kwargs['nprocs'] warnings.warn('nprocs is deprecated, use n_jobs', DeprecationWarning) if n_jobs is None: n_jobs = util.proc_count(None) loop = Parallel(n_jobs=n_jobs) path = None try: store = get_store(in_process=loop._effective_n_jobs() == 1) _logger.info('using model store %s', store) with store: key = store.put_model(algo) del algo client = store.client() nusers = pairs['user'].nunique() _logger.info('generating %d predictions for %d users', len(pairs), nusers) results = loop( delayed(_predict_user)(client, key, user, udf.copy()) for (user, udf) in pairs.groupby('user')) results = pd.concat(results, ignore_index=True, copy=False) finally: util.delete_sometime(path) if 'rating' in pairs: return pairs.join(results.set_index(['user', 'item']), on=('user', 'item')) return results
def recommend(algo, users, n, candidates=None, *, n_jobs=None, **kwargs): """ Batch-recommend for multiple users. The provided algorithm should be a :py:class:`algorithms.Recommender`. Args: algo: the algorithm users(array-like): the users to recommend for n(int): the number of recommendations to generate (None for unlimited) candidates: the users' candidate sets. This can be a function, in which case it will be passed each user ID; it can also be a dictionary, in which case user IDs will be looked up in it. Pass ``None`` to use the recommender's built-in candidate selector (usually recommended). n_jobs(int): The number of processes to use for parallel recommendations. Passed as ``n_jobs`` to :cls:`joblib.Parallel`. The default, ``None``, will make the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager. .. note:: ``nprocs`` is accepted as a deprecated alias. Returns: A frame with at least the columns ``user``, ``rank``, and ``item``; possibly also ``score``, and any other columns returned by the recommender. """ if n_jobs is None and 'nprocs' in kwargs: n_jobs = kwargs['nprocs'] warnings.warn('nprocs is deprecated, use n_jobs', DeprecationWarning) rec_algo = Recommender.adapt(algo) if candidates is None and rec_algo is not algo: warnings.warn( 'no candidates provided and algo is not a recommender, unlikely to work' ) del algo # don't need reference any more if 'ratings' in kwargs: warnings.warn('Providing ratings to recommend is not supported', DeprecationWarning) candidates = __standard_cand_fun(candidates) loop = Parallel(n_jobs=n_jobs) path = None try: _logger.debug('activating recommender loop') with loop: backend = loop._backend.__class__.__name__ njobs = loop._effective_n_jobs() _logger.info('parallel backend %s, effective njobs %s', backend, njobs) astr = str(rec_algo) if njobs > 1: fd, path = tempfile.mkstemp(prefix='lkpy-predict', suffix='.pkl', dir=util.scratch_dir(joblib=True)) path = pathlib.Path(path) os.close(fd) _logger.debug('pre-serializing algorithm %s to %s', rec_algo, path) with sharing_mode(): dump(rec_algo, path) rec_algo = _AlgoKey('file', path) _logger.info('recommending with %s for %d users (n_jobs=%s)', astr, len(users), n_jobs) timer = util.Stopwatch() results = loop( delayed(_recommend_user)(rec_algo, user, n, candidates(user)) for user in users) results = pd.concat(results, ignore_index=True, copy=False) _logger.info('recommended for %d users in %s', len(users), timer) finally: util.delete_sometime(path) return results
def recommend(algo, users, n, candidates=None, *, n_jobs=None, **kwargs): """ Batch-recommend for multiple users. The provided algorithm should be a :py:class:`algorithms.Recommender`. Args: algo: the algorithm users(array-like): the users to recommend for n(int): the number of recommendations to generate (None for unlimited) candidates: the users' candidate sets. This can be a function, in which case it will be passed each user ID; it can also be a dictionary, in which case user IDs will be looked up in it. Pass ``None`` to use the recommender's built-in candidate selector (usually recommended). n_jobs(int): The number of processes to use for parallel recommendations. Passed as ``n_jobs`` to :class:`joblib.Parallel`. The default, ``None``, will result in a call to :func:`util.proc_count`(``None``), so the process will be the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager or the ``LK_NUM_PROCS`` environment variable is set. Returns: A frame with at least the columns ``user``, ``rank``, and ``item``; possibly also ``score``, and any other columns returned by the recommender. """ if n_jobs is None and 'nprocs' in kwargs: n_jobs = kwargs['nprocs'] warnings.warn('nprocs is deprecated, use n_jobs', DeprecationWarning) if n_jobs is None: n_jobs = util.proc_count(None) rec_algo = Recommender.adapt(algo) if candidates is None and rec_algo is not algo: warnings.warn( 'no candidates provided and algo is not a recommender, unlikely to work' ) del algo # don't need reference any more if 'ratings' in kwargs: warnings.warn('Providing ratings to recommend is not supported', DeprecationWarning) candidates = __standard_cand_fun(candidates) loop = Parallel(n_jobs=n_jobs) path = None try: _logger.debug('activating recommender loop') with loop: store = get_store(in_process=loop._effective_n_jobs() == 1) _logger.info('using model store %s', store) astr = str(rec_algo) with store: key = store.put_model(rec_algo) del rec_algo client = store.client() _logger.info('recommending with %s for %d users (n_jobs=%s)', astr, len(users), n_jobs) timer = util.Stopwatch() results = loop( delayed(_recommend_user)(client, key, user, n, candidates(user)) for user in users) results = pd.concat(results, ignore_index=True, copy=False) _logger.info('recommended for %d users in %s', len(users), timer) finally: util.delete_sometime(path) return results