def prepare_for_inference(self): K.clear_session() self._network = SSD300( n_classes=80, scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05], backbone="VGG16", mode="inference")
def prepare_for_inference(self): K.clear_session() self._network = SSD300( n_classes=80, backbone="VGGDCT_deconv", dct=True, image_shape=(38, 38), scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05])
def __init__(self): # Variables to hold the description of the experiment self.config_description = "This is the template config file." # System dependent variable self._workers = 5 self._multiprocessing = True # Variables for comet.ml self._project_name = "jpeg_deep" self._workspace = "ssd" # Network variables self._weights = "/dlocal/home/2017018/bdegue01/weights/jpeg_deep/classification_dct/vgg_deconv/classification_dct_jpeg_deep_74HV774QQk4x72pBlZPeggslIeITHkcQ/checkpoints/epoch-94_loss-1.8564_val_loss-2.2586_ssd.h5" self._network = SSD300(backbone="VGGDCT_deconv", dct=True, image_shape=(38, 38)) # Training variables self._epochs = 240 self._batch_size = 32 self._steps_per_epoch = 1000 self.optimizer_parameters = {"lr": 0.001, "momentum": 0.9} self._optimizer = SGD(**self.optimizer_parameters) self._loss = SSDLoss(neg_pos_ratio=3, alpha=1.0).compute_loss self._metrics = None dataset_path = environ["DATASET_PATH"] images_2007_path = join(dataset_path, "VOC2007/JPEGImages") images_2012_path = join(dataset_path, "VOC2012/JPEGImages") self.train_sets = [(images_2007_path, join(dataset_path, "VOC2007/ImageSets/Main/train.txt")), (images_2012_path, join(dataset_path, "VOC2012/ImageSets/Main/train.txt"))] self.validation_sets = [(images_2007_path, join(dataset_path, "VOC2007/ImageSets/Main/val.txt")), (images_2012_path, join(dataset_path, "VOC2012/ImageSets/Main/val.txt"))] self.test_sets = [(images_2007_path, join(dataset_path, "VOC2007/ImageSets/Main/test.txt"))] # Keras stuff self.model_checkpoint = None self.reduce_lr_on_plateau = ReduceLROnPlateau(patience=5, verbose=1) self.terminate_on_nan = TerminateOnNaN() self.early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15) self._callbacks = [ self.reduce_lr_on_plateau, self.early_stopping, self.terminate_on_nan ] self.input_encoder = SSDInputEncoder() self.train_tranformations = [SSDDataAugmentation()] self.validation_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self.test_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self._train_generator = None self._validation_generator = None self._test_generator = None self._horovod = None
def prepare_for_inference(self): K.clear_session() self._network = SSD300(backbone="VGGDCT_deconv", dct=True, image_shape=(38, 38), mode="inference")
def __init__(self): # Variables to hold the description of the experiment self.config_description = "This is the template config file." # System dependent variable self._workers = 5 self._multiprocessing = True # Variables for comet.ml self._project_name = "jpeg_deep" self._workspace = "ssd" # Network variables self._weights = "/dlocal/home/2017018/bdegue01/weights/jpeg_deep/classification_dct/vggd_y/classification_dct_jpeg_deep_GlhLFIjZN2pv5rXF9NJG6wJkhZnL2Nkq/checkpoints/epoch-97_loss-2.0259_val_loss-2.4263_ssd.h5" self._network = SSD300( n_classes=80, backbone="VGGDCT_y", dct=True, image_shape=(38, 38), scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05]) # Training variables self._epochs = 240 self._batch_size = 32 self._steps_per_epoch = 3700 self._validation_steps = 156 self.optimizer_parameters = {"lr": 0.001, "momentum": 0.9} self._optimizer = SGD(**self.optimizer_parameters) self._loss = SSDLoss(neg_pos_ratio=3, alpha=1.0).compute_loss self._metrics = None dataset_path = environ["DATASET_PATH"] self.train_image_dir = join(dataset_path, "train2017") self.train_annotation_path = join( dataset_path, "annotations/instances_train2017.json") self.validation_image_dir = join(dataset_path, "val2017") self.validation_annotation_path = join( dataset_path, "annotations/instances_val2017.json") self.test_annotation_path = join( dataset_path, "annotations/image_info_test-dev2017.json") self.test_image_dir = join(dataset_path, "test2017") # Keras stuff self.model_checkpoint = None self.reduce_lr_on_plateau = ReduceLROnPlateau(patience=5, verbose=1) self.terminate_on_nan = TerminateOnNaN() self.early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15) self._callbacks = [ self.reduce_lr_on_plateau, self.early_stopping, self.terminate_on_nan ] self.input_encoder = SSDInputEncoder( n_classes=80, scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05]) self.train_transformations = [SSDDataAugmentation()] self.validation_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self.test_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self._train_generator = None self._validation_generator = None self._test_generator = None self._horovod = None self.coco_classes = [ "background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] self._displayer = DisplayerObjects(classes=self.coco_classes)
def __init__(self): # Variables to hold the description of the experiment self.config_description = "This is the template config file." # System dependent variable self._workers = 5 self._multiprocessing = True # Variables for comet.ml self._project_name = "jpeg_deep" self._workspace = "ssd" # Network variables self._weights = "/dlocal/home/2017018/bdegue01/weights/jpeg_deep/reproduce/vgg/full_reg/vggd/epoch-86_loss-1.4413_val_loss-1.9857_ssd.h5" self._network = SSD300( n_classes=80, scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05], backbone="VGG16") # Training variables self._epochs = 240 self._batch_size = 32 self._steps_per_epoch = 3700 self._validation_steps = 156 self.optimizer_parameters = {"lr": 0.001, "momentum": 0.9} self._optimizer = SGD(**self.optimizer_parameters) self._loss = SSDLoss(neg_pos_ratio=3, alpha=1.0).compute_loss self._metrics = None dataset_path = environ["DATASET_PATH"] self.train_image_dir = join(dataset_path, "train2017") self.train_annotation_path = join( dataset_path, "annotations/instances_train2017.json") self.validation_image_dir = join(dataset_path, "val2017") self.validation_annotation_path = join( dataset_path, "annotations/instances_val2017.json") # Keras stuff self.model_checkpoint = None self.reduce_lr_on_plateau = ReduceLROnPlateau(patience=5, verbose=1) self.terminate_on_nan = TerminateOnNaN() self.early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15) self._callbacks = [ self.reduce_lr_on_plateau, self.early_stopping, self.terminate_on_nan ] self.input_encoder = SSDInputEncoder( n_classes=80, scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05]) self.train_tranformations = [SSDDataAugmentation()] self.validation_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self.test_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300) ] self._train_generator = None self._validation_generator = None self._test_generator = None self._horovod = None
def prepare_for_inference(self): K.clear_session() self._network = SSD300(mode="inference")
def __init__(self): # Variables to hold the description of the experiment self.config_description = "Configuration file for the training on the PascalVOC 07 dataset." # System dependent variable self._workers = 5 self._multiprocessing = True # Variables for comet.ml self._project_name = "jpeg_deep" self._workspace = "ssd" # Network variables self._weights = "/dlocal/home/2017018/bdegue01/weights/jpeg_deep/reproduce/vgg/full_reg/vggd/epoch-86_loss-1.4413_val_loss-1.9857_ssd.h5" self._network = SSD300() # Training variables self._epochs = 240 self._batch_size = 32 self._steps_per_epoch = 1000 self.optimizer_parameters = { "lr": 0.001, "momentum": 0.9} self._optimizer = SGD(**self.optimizer_parameters) self._loss = SSDLoss(neg_pos_ratio=3, alpha=1.0).compute_loss self._metrics = None dataset_path = environ["DATASET_PATH"] images_2007_path = join(dataset_path, "VOC2007/JPEGImages") self.train_sets = [(images_2007_path, join( dataset_path, "VOC2007/ImageSets/Main/train.txt"))] self.validation_sets = [(images_2007_path, join( dataset_path, "VOC2007/ImageSets/Main/val.txt"))] self.test_sets = [(images_2007_path, join( dataset_path, "VOC2007/ImageSets/Main/test.txt"))] # Keras stuff self.model_checkpoint = None self.reduce_lr_on_plateau = ReduceLROnPlateau(patience=5, verbose=1) self.terminate_on_nan = TerminateOnNaN() self.early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15) self._callbacks = [self.reduce_lr_on_plateau, self.early_stopping, self.terminate_on_nan] self.input_encoder = SSDInputEncoder() self.train_transformations = [SSDDataAugmentation()] self.validation_transformations = [ ConvertTo3Channels(), Resize(height=300, width=300)] self.test_transformations = [ConvertTo3Channels(), Resize( height=300, width=300)] self._train_generator = None self._validation_generator = None self._test_generator = None self._displayer = DisplayerObjects()