def sort_camera_trap_images(unsorted_dir): json_name = os.path.dirname(unsorted_dir) + ".json" snapcat_database_dir = os.path.join(unsorted_dir, json_name) snapcat_json = json_database.JSONDatabase(snapcat_database_dir) burst.create_bursts(snapcat_json, unsorted_dir) segmentation.segment_images(snapcat_json) label_images.label_images(snapcat_json) user_label_image.user_label_images_burst(snapcat_json) generate_report.generate_report(snapcat_json, unsorted_dir)
def sort_camera_trap_images(unsorted_dir): json_name = os.path.basename(os.path.dirname(unsorted_dir)) + ".json" snapcat_database_dir = os.path.join(unsorted_dir, json_name) snapcat_json = json_database.JSONDatabase(snapcat_database_dir) burst.create_bursts(snapcat_json, unsorted_dir) #segmentation.segment_images( snapcat_json ) #label_images( snapcat_json ) # TODO make sure this is working well to deliver to Island conservation. # make sure the label is saved in the dataset user_label_image.user_label_images_burst(snapcat_json) generate_report.generate_report(snapcat_json, unsorted_dir)
def main(): parser = argparse.ArgumentParser() parser.add_argument("--image_dir", help="will list all the images within this directory and have user label them", default="") parser.add_argument("--json_dir", help="path to the json database for images" ) parser.add_argument("--gif", help="display all images from burst or not", default="false" ) args = parser.parse_args() snapcat_json = json_database.JSONDatabase( args.json_dir ) image_list = list_all_jpgs ( args.image_dir ) print( "gif", args.gif.lower() ) if args.gif.lower() == "true": user_label_images_burst( snapcat_json ) else: user_label_images_single( snapcat_json, image_list )
print("cat") snapcat_json.update( image, "classifier_label", "cat" ) #TODO - classifier_label will be associated with an area of interest elif results[i] >= settings.sort_image[ 'not_cat_confidence_threshold'] and labels[ i] == 'not cats': print("not cat") snapcat_json.update( image, "classifier_label", "not_cat" ) #TODO - classifier_label will be associated with an area of interest else: print("unsure") snapcat_json.update( image, "classifier_label", "unsure" ) #TODO - classifier_label will be associated with an area of interest break snapcat_json.save() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--json_dir", help="path to the json database for images") args = parser.parse_args() snapcat_json = json_database.JSONDatabase(args.json_dir) label_images(snapcat_json)