def load_json(file, new_root_dir=None, decompression=False): """Load a JSON file using json_tricks""" if decompression: with open(file, 'rb') as f: my_object = load(f, decompression=decompression) else: with open(file, 'r') as f: my_object = load(f, decompression=decompression) if new_root_dir: my_object.root_dir = new_root_dir return my_object
def test_file_numpy(): path = join(mkdtemp(), 'pytest-np.json') with open(path, 'wb+') as fh: dump(deepcopy(npdata), fh, compression=9) with open(path, 'rb') as fh: data2 = load(fh, decompression=True) _numpy_equality(data2)
def import_keras_json(filename): #import architecture and weights from keras network print 'Loading Model Architecture from Keras .json output...' with open(filename+"_arch.json") as datafile: arch_dict=load(datafile,preserve_order=True) return arch_dict
def test_file_numpy(): path = join(mkdtemp(), 'pytest-np.json') with open(path, 'wb+') as fh: dump(npdata, fh, compression=9) with open(path, 'rb') as fh: data2 = load(fh, decompression=True) _numpy_equality(data2)
def load_song(path, **kwargs): ''' Small helper function to load song from path :param path: (string) | path to load :param kwargs: (arr) | to pass arguments to the Slice sub class :return: ''' y, sr = load(path=path, **kwargs) return (y, sr)
def load_json_from_temp_folder(temp_out_folder, expected): # load the results from the temporary folder out_dict = {} for exp in expected: fpath = os.path.join(temp_out_folder, exp + '.json') if os.path.isfile(fpath): out_dict[exp] = json.load(open(fpath)) os.unlink(fpath) # remove file created in the temporary folder else: raise Exception(u'Missing output {0:s} file'.format(exp)) return out_dict
def main(argv): inputfile = '' outputfile = '' tweets = [] labels = [] tknzr = TweetTokenizer() try: opts, args = getopt.getopt(argv, "hi:o:", ["ifile=", "ofile="]) except getopt.GetoptError: print('vectorize.py -i <inputfile.json> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('vectorize.py -i <inputfile.json> -o <outputfile>') sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg data = load(open(inputfile, 'r')) # pre process data all uniques and with accepted klasses for pre_data in data: if (pre_data['klass'] != 'NONE'): tweets.append(tknzr.tokenize(pre_data['text'])) labels.append(pre_data['klass']) # load http://crscardellino.me/SBWCE/ trained model model = gensim.models.KeyedVectors.load_word2vec_format( 'SBW-vectors-300-min5.bin', binary=True) shape = (len(tweets), MAX_NB_WORDS, 1) tweets_tensor = np.zeros(shape, dtype=np.int32) for i in range(len(tweets)): #vectorizing each word in the tweet with a vector shape = (300,) for f in range(len(tweets[i])): word = tweets[i][f] if f >= MAX_NB_WORDS: continue #if is not in the vocabulary if word in model.wv.vocab: tweets_tensor[i][f] = model.wv.index2word.index(word) else: #if it is a mention vectorize a name, for example @michael123 -> would be Carlos if word[0] == '@': tweets_tensor[i][f] = model.wv.index2word.index(name()) #if not append the unknown token else: tweets_tensor[i][f] = model.wv.index2word.index('unk') #End of sentence token if (f < MAX_NB_WORDS): tweets_tensor[i][f] = model.wv.index2word.index('eos') labels_array = np.array(list( map(lambda label: label_to_value(label), labels)), dtype=np.int32) print(tweets_tensor) print(labels_array)
img_x, img_y, img_z = 28,28,1 image_dim=(img_z,img_x,img_y) X_train = X_train.reshape(X_train.shape[0], img_z, img_x, img_y) X_test = X_test.reshape(X_test.shape[0], img_z, img_x, img_y) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 samples_train = X_train.shape[0] samples_test = X_test.shape[0] #import architecture and weights from keras network print 'Loading Model Architecture from Keras .json output...' in_filename='mnist_CNN_v2' with open(in_filename+"_arch.json") as datafile: arch_dict=load(datafile,preserve_order=True) print 'Building the Network...' model_dict={} conn_dict={} presentation_time=0.05 # image=X_train[0] # model_dict['image']=image model = nengo.Network() with model: #rebuild the keras model for key, value in arch_dict.items(): if key == 'input':
# This code is mostly by Sze Meng Tan, re-implementing the algorithms # described in his 1986 PhD thesis "Aperture-synthesis mapping and # parameter estimation" import numpy from scipy.optimize import leastsq, brent import numpy as np from json_tricks.np import load from crocodile.synthesis import * # Load kernel cache KERNEL_CACHE = {} with open('gridder.json', 'r') as f: for key, val in load(f): KERNEL_CACHE[tuple(key[0])] = val def trap(vec, dx): # Perform trapezoidal integration return dx * (numpy.sum(vec) - 0.5 * (vec[0] + vec[-1])) def func_to_min(h, x0, M, R): N = len(h) nu = (np.arange(M, dtype=float) + 0.5) / (2 * M) x = x0 * np.arange(N+1, dtype=float)/N C = calc_gridder_as_C(h, x0, nu, R) dnu = nu[1] - nu[0] dx = x[1] - x[0] h_ext = np.concatenate(([1.0], h)) loss = np.zeros((len(h_ext), 2, M), dtype=float)
def from_json(input_str): try: # file given return json.load(open(input_str), preserve_order=False) except IOError: # string given return json.loads(input_str, 'r', preserve_order=False)
def load_music_data(attrstr): attrfile = IO.get_abspath_from_relpath_in_tomato( 'music_data', attrstr + '.json') return json.load(open(attrfile))